Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T15:00:50.260Z Has data issue: false hasContentIssue false

Electrogenerated Chemiluminescence and Fluorescence Lifetime Spatial Heterogeneity of Poly (2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) in Presence of [6,6]-phenyl-C61-butyric Acid Methyl Ester

Published online by Cambridge University Press:  15 January 2013

Hongwei Geng
Affiliation:
Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487 USA
Shanlin Pan
Affiliation:
Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487 USA
Dehong Hu
Affiliation:
Fundamental and Computational Science Directorate, Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352
Get access

Abstract

We present electrogenerated chemiluminescence (ECL) and fluorescence lifetime mapping of MEH-PPV/PCBM thin films. The ECL results show that the oxidation peak of MEH-PPV near 0.7 V (vs. SCE) and ECL response of films shifted positively towards 1.2 V in the presence of PCBM. At the same time, the oxidation current density of MEH-PPV increases along with the decrease of ECL intensity in the presence of PCBM. The fluorescence lifetime images clearly show that the lifetime spatial heterogeneities are affected by different substrates and MEH-PPV/PCBM ratios. Meanwhile, the lifetime of MEH-PPV decreases with the increasing of film thickness. The lifetimes of MEH-PPV films on TiO2 substrate are lower than films on glass.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tang, C. W., Appl. Phys. Lett., 1986, 48, 183185.CrossRefGoogle Scholar
Yu, G. and Heeger, A. J., Synthetic Met., 1997, 85, 11831186.CrossRefGoogle Scholar
Gunes, S., Marjanovic, N., Nedeljkovic, J. M. and Sariciftci, N. S., Nanotechnology, 2008, 19, 424009.CrossRefGoogle Scholar
Kim, J. Y., Lee, K., Coates, N. E., Moses, D., Nguyen, T. Q., Dante, M. and Heeger, A. J., Science, 2007, 317, 222225.CrossRefGoogle Scholar
Xue, L. L., Liu, L. J., Gao, Q., Wen, S. P., He, J. T. and Tian, W. J., Sol. Energ. Mat. Sol. Cells, 2009, 93, 501507.CrossRefGoogle Scholar
Kumar, S. and Nann, T., J Mater Res, 2004, 19, 19901994.CrossRefGoogle Scholar
Alam, M. M. and Jenekhe, S. A., Chem. Mater., 2004, 16, 46474656.CrossRefGoogle Scholar
Greenham, N. C., Peng, X. G. and Alivisatos, A. P., Synthetic Met., 1997, 84, 545546.CrossRefGoogle Scholar
Petrella, A., Tamborra, M., Curri, M. L., Cosma, P., Striccoli, M., Cozzoli, P. D. and Agostiano, A., J. Phys. Chem. B, 2005, 109, 15541562.CrossRefGoogle Scholar
Yu, G., Gao, J., Hummelen, J. C., Wudl, F. and Heeger, A. J., Science, 1995, 270, 17891791.CrossRefGoogle Scholar
Tenery, D., Worden, J. G., Hu, Z. J. and Gesquiere, A. J., J Lumin, 2009, 129, 423429.CrossRefGoogle Scholar
Tenery, D. and Gesquiere, A. J., Chem. Phys. Chem., 2009, 10, 24492457.CrossRefGoogle Scholar
Lungenschmied, C., Dennler, G., Neugebauer, H., Sariciftci, S. N., Glatthaar, M., Meyer, T. and Meyer, A., Sol. Energ. Mat. Sol. Cells, 2007, 91, 379384.CrossRefGoogle Scholar
Krebs, F. C., Spanggard, H., Kjaer, T., Biancardo, M. and Alstrup, J., Mat Sci Eng B-Solid, 2007, 138, 106111.CrossRefGoogle Scholar
Jorgensen, M., Norrman, K. and Krebs, F. C., Sol. Energ. Mat. Sol. Cells, 2008, 92, 686714.CrossRefGoogle Scholar
Yang, X. N., Loos, J., Veenstra, S. C., Verhees, W. J. H., Wienk, M. M., Kroon, J. M., Michels, M. A. J. and Janssen, R. A. J., Nano Lett., 2005, 5, 579583.CrossRefGoogle Scholar
Gevorgyan, S. A. and Krebs, F. C., Chem. Mater., 2008, 20, 43864390.CrossRefGoogle Scholar
Lin, Y. Y., Chu, T. H., Li, S. S., Chuang, C. H., Chang, C. H., Su, W. F., Chang, C. P., Chu, M. W. and Chen, C. W., J. Am. Chem. Soc., 2009, 131, 36443649.CrossRefGoogle Scholar
You, J. B., Chen, C. C., Dou, L. T., Murase, S., Duan, H. S., Hawks, S. A., Xu, T., Son, H. J., Yu, L. P., Li, G. and Yang, Y., Adv. Mater., 2012, 24, 52675272.CrossRefGoogle Scholar
Gao, F. G., Bard, A. J. and Kispert, L. D., J. Photoch. Photobio. A, 2000, 130, 4956.CrossRefGoogle Scholar
Miao, W. J., Chem. Rev., 2008, 108, 25062553.CrossRefGoogle Scholar
Wang, S. J., Milam, J., Ohlin, A. C., Rambaran, V. N., Clark, E., Ward, W., Seymour, L., Casey, W. H., Holder, A. A. and Miao, W. J., Anal. Chem., 2009, 81, 40684075.CrossRefGoogle Scholar
Hill, C. M., Zhu, Y. and Pan, S., Acs Nano, 2011, 5, 942951.CrossRefGoogle Scholar