Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T00:55:46.390Z Has data issue: false hasContentIssue false

Electrically conductive composites via infiltration of single-walled carbon nanotube-based aerogels

Published online by Cambridge University Press:  01 February 2011

Marcus A Worsley
Affiliation:
worsley1@llnl.gov, Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, 7000 East Ave, Livermore, California, 94550, United States
Joshua D. Kuntz
Affiliation:
kuntz2@llnl.gov, Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, California, United States
Sergei Kucheyev
Affiliation:
kucheyev@llnl.gov, United States
Alex V Hamza
Affiliation:
hamza1@llnl.gov, Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, California, United States
Joe H Satcher
Affiliation:
satcher1@llnl.gov, Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, California, United States
Theodore F Baumann
Affiliation:
baumann2@llnl.gov, Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, California, United States
Get access

Abstract

Many challenges remain in the effort to realize the exceptional properties of carbon nanotubes (CNT) in composite materials. Here, we report on electrically conductive composites fabricated via infiltration of CNT-based aerogels. The ultra low-density, high conductivity, and extraordinary robustness of the CNT aerogels make them ideal scaffolds around which to create conductive composites. Infiltrating the aerogels with various insulating materials (e.g. epoxy and silica) resulted in composites with electrical conductivities over 1 Scm-1 with as little as 1 vol% nanotube content. The electrical conductivity observed in the composites was remarkably close to that of the CNT scaffold in all cases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Thess, A. et al. , Science 273, 483 (1996).Google Scholar
2 Kim, P. Shi, L. Majumdar, A. McEuen, P. L. Physical Review Letters 87, 215502 (2001).Google Scholar
3 Qi, H. J. Teo, K. B. K. Lau, K. K. S. Boyce, M. C. Milne, W. I. Robertson, J. Gleason, K. K. Journal of the Mechanics and Physics of Solids 51, 2213 (2003).Google Scholar
4 Falvo, M. R. Clary, G. J. Taylor, R. M. Chi, V. Brooks, F. P. Washburn, S. Superfine, R. Nature 389, 582 (1997).Google Scholar
5 Zhan, G. D. Kuntz, J. D. Garay, J. E. Mukherjee, A. K. Applied Physics Letters 83, 1228 (2003).Google Scholar
6 Bryning, M. B. Islam, M. F. Kikkawa, J. M. Yodh, A. G. Advanced Materials 17, 1186 (2005).Google Scholar
7 Du, F. M. Guthy, C. Kashiwagi, T. Fischer, J. E. Winey, K. I. Journal of Polymer Science Part B-Polymer Physics 44, 1513 (2006).Google Scholar
8 Haggenmueller, R. Guthy, C. Lukes, J. R. Fischer, J. E. Winey, K. I. Macromolecules 40, 2417 (2007).Google Scholar
9 Winey, K. I. Kashiwagi, T. Mu, M. F. Mrs Bulletin 32, 348 (2007).Google Scholar
10 Mathur, R. B. Pande, S. Singh, B. P. Dhami, T. L. Polymer Composites 29, 717 (2008).Google Scholar
11 Worsley, M. A. Satcher, J. H. Baumann, T. F. Langmuir 24, 9763 (2008).Google Scholar
12 Byrne, M. T. McNamee, W. P. Gun'ko, Y. K., Nanotechnology, 415707 (2008).Google Scholar
13 Tchoul, M. N. Ford, W. T. Ha, M. L. P. Chavez-Sumarriva, I., Grady, B. P. Lolli, G. Resasco, D. E. Arepalli, S. Chemistry of Materials 20, 3120 (2008).Google Scholar
14 Yang, Y. Gupta, M. C. Dudley, K. L. Nanotechnology 18, 345701 (2007).Google Scholar
15 Grossiord, N. Loos, J. Laake, L. v. Maugey, M. Zakri, C. Koning, C. E. Hart, A. J. Advanced Functional Materials 18, 3226 (2008).Google Scholar
16 Vaisman, L. Wagner, H. D. Marom, G. Advances in Colloid and Interface Science 128, 37 (2006).Google Scholar
17 Rouse, J. H. Langmuir 21, 1055 (2005).Google Scholar
18 Regev, O. ElKati, P. N. B. Loos, J. Koning, C. E. Advanced Materials 16, 248 (2004).Google Scholar
19 Grossiord, N. Loos, J. Regev, O. Koning, C. E. Chemistry of Materials 18, 1089 (2006).Google Scholar
20 Worsley, M. A. Kucheyev, S. O. Satcher, J. H. Hamza, A. V. Baumann, T. F. Applied Physics Letters 94, 073115 (2009).Google Scholar
21 Wiley, T. M. Lee, J. R. I. Buuren, T. V. personal communication.Google Scholar
22 Wang, J. Angnes, L. Tobias, H. Roesner, R. A. Hong, K. C. Glass, R. S. Kong, F. M. Pekala, R. W. Analytical Chemistry 65, 2300 (1993).Google Scholar
23 Worsley, M. A. Kucheyev, S. O. Kuntz, J. D. Hamza, A. V. Satcher, J. H. Baumann, T. F. Journal of Materials Chemistry, DOI: 10.1039/B905735H.Google Scholar