No CrossRef data available.
Published online by Cambridge University Press: 17 March 2011
We report the electronic characterization of n-ScN in ScN-Si heterojunctions using Deep Level Transient Spectroscopy of electrically active deep levels. ScN material was grown by plasma assisted physical vapor deposition and by reactive sputtering on commercial p+ Si substrates. Deep level transient spectroscopy of the junction grown by plasma assisted physical vapor deposition shows the presence of an electronic trap with activation energy EC-ET= 0.51 eV. The trap has a higher concentration (1.2–1.6 1013cm−3) closer to the ScN/Si interface. Junctions grown by sputtering also have an electronic trap, situated at about EC-ET= 0.90 eV.