Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T23:48:26.307Z Has data issue: false hasContentIssue false

Electrical Transport Studies of the Hydrogen-Related Compensating Donor in B-Doped Silicon Diodes

Published online by Cambridge University Press:  28 February 2011

A. J. Tavendale
Affiliation:
Australian Atomic Energy Commission, Lucas Heights Research Laboratories PMB, Sutherland, NSW 2232, Australia
A. A. Williams
Affiliation:
Australian Atomic Energy Commission, Lucas Heights Research Laboratories PMB, Sutherland, NSW 2232, Australia
D. Alexiev
Affiliation:
Australian Atomic Energy Commission, Lucas Heights Research Laboratories PMB, Sutherland, NSW 2232, Australia
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974, USA
Get access

Abstract

Transport of the hydrogen-related, acceptor-compensating defect has been observed in reverse-bias annealed Al-gate Schottky and n+-P diodes from hydrogenated, B-doped p-Si. Secondary ion mass spectroscopy (SIMS) profiling (deuterium substitution) confirmed field-aided migration. Significant differences in field transport (and thermal diffusion) between diodes from Hand D-treated p-Si(B) qualitatively indicates a monatomic species. The effect is interpreted as field drift of a positively charged species, possibly H+, with a donor charge state in the upper-half band gap, in conflict with long-held theory predicting very deep level activity. Acceptor compensation is unstable under minority (electron) carrier injection by forward bias or illumination at 25°C, supporting the acceptor-protonic trap pair model (A-H+) of Sah, Pan and Hsu [J. Appl. Phys. 57, 5148 (1985)].

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pankove, J.I., Carlson, D.E., Berkeyheiser, J.E. and Wance, R.O., Phys. Rev. Lett. 24, 2224 (1983).Google Scholar
2. Pankove, J.I., Wance, R.O. and Berkeyheiser, J.E., Appl. Phys. Lett. 45, 1100 (1984).Google Scholar
3. Hansen, W.L., Pearton, S.J. and Haller, E.E., Appl. Phys. Lett. 44, 606 (1984).Google Scholar
4. Sah, C-T., Sun, J. Y-C. and Tzou, J. J-T., J. Appl. Phys. 54, 5864 (1983); Appl. Phys. Lett. 43, 204 (1983).Google Scholar
5. Johnson, N.M. and Moyer, M.D., Appl. Phys. Lett. 46, 787 (1985).Google Scholar
6. Mikkelsen, J.C., Appl. Phys. Lett. 46, 882 (1985); 1985 MRS Spring Meeting, San Francisco, CA, Symposium V, Defects in Semiconductors.Google Scholar
7. Johnson, N.M., Phys. Rev. B 31, 6861 (1985).Google Scholar
8. Tavendale, A.J., Alexiev, D. and Williams, A.A., Appl. Phys. Lett. 47, 316 (1985).Google Scholar
9. Johnson, N.M., Appl. Phys. Lett. 47, 874 (1985).Google Scholar
10. Pankove, J.l., Magee, C.W. and Wance, R.O., Appl. Phys. Lett. 47, 748 (1985).Google Scholar
11. Tavendale, A.J., Williams, A.A. and Pearton, S.J. (unpublished).Google Scholar
12. SIMS Analysis by Charles Evans and Associates, San Mateo, CA, USA.Google Scholar
13. Reiss, H., J. Chem. Phys. 25, 681 (1956).Google Scholar
14. Wang, J. S-Y. and Kittel, C., Phys. Rev. B 7, 713 (1973).Google Scholar
15. Mainwood, A. and Stoneham, A.M., J. Phys. C: Sol. State Phys. 17, 2513 (1984).CrossRefGoogle Scholar
16. Katayama-Yoshida, H., Proc. 13th Int. Conf. Defects in Semiconductors, Coronado, CA, Aug. 12–17, 1984, edited by Kimerling, L.C. and Parsey, J.M. (Metallurg. Soc. of AIME, New York, 1985).Google Scholar
17. Sah, C-T., Pan, S. C-S. and Hsu, C. C-H., J. Appl. Phys. 57, 5148 (1985).Google Scholar