Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T13:32:49.299Z Has data issue: false hasContentIssue false

Electrical Modelling and Characterisation of Alloyed Ohmic Contacts

Published online by Cambridge University Press:  21 February 2011

Geoffrey K. Reeves
Affiliation:
Royal Melbourne Institute of Technology, Melbourne, Australia.
Patrick W. Leech
Affiliation:
Telecom Australia Research Labs, Melbourne, Australia.
H. Barry Harrison
Affiliation:
Griffith University, Brisbane, Australia.
Get access

Abstract

This paper briefly reviews the standard Transmission Line Model (TLM) commonly used to measure the specific contact resistance of a planar ohmic contact. It is proposed that in the case of a typical Au-Ge-Ni alloyed ohmic contact, a more realistic model would need to take into account the presence of the alloyed layer at the metal-semiconductor interface. An alternative is described which is based on three contact layers and the two interfaces between them, thus forming a Tri-Layer Transmission Line Model (TLTLM). Expressions are given for the contact resistance Rc and the contact end resistance Re of this structure, together with a current division factor, f. Values for the parameters of this model are inferred from experimentally reported values of Rc and Re for two types of contact.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Berger, H., Solid State Electron., 15, 145, (1972).Google Scholar
2 Reeves, G.K. and Harrison, H.B., IEEE Trans. on Electron Dev., ED–33(3), 328, (1986).Google Scholar
3 Scott, D.B., Hunter, W.R. and Shichijo, H., IEEE Trans. Electron Dev., ED–29(4), 651, (1982).Google Scholar
4 Feuer, M.D., IEEE Trans. Electron Dev., ED–32(1), 7, (1985).Google Scholar
5 Pimbley, J.M., IEEE Trans. Electron Dev., ED–33(11), 1795, (1986).CrossRefGoogle Scholar
6 Shockley, W., Air Force Atomic Laboratory, Wright-Patterson Air Force Base, Rep. No. AL-TDR-64-207, Sept. 1964.Google Scholar
7 Cox, R.H. and Strack, H., Solid-State Electron., 10, 1213, (1967).Google Scholar
8 Reeves, G.K. and Harrison, H.B., IEEE Electron Dev. Letts., EDL–3(5), 111 1982.Google Scholar
9 Proctor, S. and Linholm, L., IEEE Electron Dev.Lett., EDL–3(10), 294, (1982).Google Scholar
10 Reeves, G.K. and Harrison, H.B., MRS Symp. Proc., 260, 31, (1992).Google Scholar
11 Ogawa, M., J. Appl. Phys., 51(1), 406, (1980).Google Scholar
12 Braslau, N., J. Vac. Sci. Technol., 19(3), 803, (1981).Google Scholar
13 Kuan, T.S., Batson, P.E., Jackson, T.N., Rupprecht, H. and Wilkie, E.L., J. Appl. Phys., 54(12), 6952, (1983).CrossRefGoogle Scholar
14 Murakami, M., K.D., Childs, Baker, J.M. and A., Callegari, J. Vac. Sci. Technol., B4(4), 903, (1986).Google Scholar
15 Callegari, A., Murakami, M., Baker, J.M., Shih, Y.C. and Lacey, D., 17th Eur. Sol. Stat. Dev. Res. Conf., ESSDERC 87, 601, (1988).Google Scholar
16 Kellner, W., Siemens Forsch.-u. Entwickl.-Ber, 4(3), 137, (1975).Google Scholar
17 Goronkin, H., Tehrani, S., Remmel, T., Fejes, P. and Johnson, K.J., IEEE Trans. Electron Dev., ED–36(2), 281, (1989).Google Scholar
18 Reeves, G.K. and Harrison, H.B., to be published.Google Scholar
19 Henry, H.G., IEEE Trans. Electron Dev., ED–36(7), 1390, (1989).Google Scholar
20 Dingfen, W., Dening, W. and Heime, K., Solid-St. Electron., 29(5), 489, (1986).Google Scholar
21 Barnes, P.A. and Cho, A.Y., Appl. Phys. Lett., 33(7), 651, (1978).Google Scholar
22 Shenai, K., IEEE Trans. Electron Dev., ED–34(8), 1642, (1987).Google Scholar
23 Leech, P.W. and Reeves, G.K., Semicon. Sci. and Technol., 8, (1993). (In Press)Google Scholar