Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T14:54:01.119Z Has data issue: false hasContentIssue false

Electrical Measurement of the Vanadium Acceptor Level in 4H- and 6H-SiC

Published online by Cambridge University Press:  01 February 2011

William C Mitchel
Affiliation:
william.mitchel@wpafb.af.mil, Air Force Research Laboratory, AFRL/MLPS, Bldg. 651, 2005 Hobson Way, Wright Patterson AFB, OH, 45433-7707, United States, 937 255 9891, 937 255 4913
William D. Mitchell
Affiliation:
william.mitchell@wpafb.af.mil, Air Force Research Laboratory, AFRL/MLPS, Wright Patterson AFB, OH, 45433-7707, United States
H. E. Smith
Affiliation:
howard.smith@wpafb.af.mil, Air Force Research Laboratory, AFRL/MLPS, Wright Patterson AFB, OH, 45433-7707, United States
M. E. Zvanut
Affiliation:
mezvanut@uab.edu, University of Alabama at Birmingham, Physics Department, Birmingham, AL, 35294, United States
Wonwoo Lee
Affiliation:
mezvanut@uab.edu, University of Alabama at Birmingham, Physics Department, Birmingham, AL, 35294, United States
Get access

Abstract

Temperature dependent Hall effect, Fourier transform infrared absorption, and electron paramagnetic resonance (EPR) studies have been performed on both 6H and 4H vanadium doped semi-insulating SiC samples grown by the physical vapor transport technique. Nitrogen and boron concentrations have been measured in some samples by secondary ion mass spectrometry (SIMS). Unlike undoped s.i. SiC, where several different thermal ionization energies have been observed, the ionization energies for all of the vanadium doped s.i. samples studied here were found to cluster around only two values for the two polytypes, EC – 0.85 eV and EC – 1.54 eV for 6H and EC – 1.11 eV and EC – 1.57 eV for 4H. SIMS measurements indicate that the nitrogen concentration exceeds the boron concentration in samples with the shallower of two values while the opposite is true for the deeper level samples. EPR detected both V3+ and V4+ in shallower level samples while only V4+ was detected in the deeper level samples. These results indicate that the vanadium acceptor level, V3+/4+, is located at EC – 0.85 eV in 6H-SiC and EC – 1.11 eV in 4H-SiC. However, some EPR results do show a small, unexpected asymmetry in the angular dependence of the V4+ signal, most noticeably in the 4H samples. This suggests that at least some of the vanadium related levels might be complexed with another defect or be under higher local strain than expected.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yoganathan, M., Gupta, A., Semenas, E., Emorhokpor, E., Martin, C., Kerr, T., Zwieback, I., Souzis, A. E., Anderson, T. A., Tanner, C. D., Chen, J., Barrett, D. L., Hopkins, R. H., Johnson, C. J., Yan, Fei, Choyke, W. J. and Devaty, R. P., Mat. Res. Soc. Symp. Proc. 815, J5.9.1 (2004).Google Scholar
2 Bickermann, M., Weingärtner, R. and Winnacker, A., J. Cryst. Growth 254, 390 (2003).Google Scholar
3 Jenny, J. R., Skowronski, M., Mitchel, W. C., Hobgood, H. M., Glass, R. C., Augustine, G. and Hopkins, R. H., J. Appl. Phys. 78, 3839 (1995).Google Scholar
4 Jenny, J. R., Skowronski, M., Mitchel, W. C., Smith, S. R., Evwaraye, A. O., Hobgood, H. M., Glass, R. C., Augustine, G. and Hopkins, R. H., Mat. Res. Soc. Symp. Proc. 423, 507 (1996).Google Scholar
5 Jenny, J. R., Skowronski, M., Mitchel, W. C., Hobgood, H. M., Glass, R. C., Augustine, G. and Hopkins, R. H., Appl. Phys. Lett. 68, 1963 (1996).Google Scholar
6 Dalibor, T., Pensl, G., Matsunami, H., Kimoto, T., Choyke, W. J., Schöner, A. and Nordell, N., Phys. Stat. Sol. (a) 162, 199 (1997).Google Scholar
7 Achtziger, N. and Witthuhn, W., Phys. Rev. B. 57, 12181 (1998).Google Scholar
8 Achtziger, N., Forkel-Wirth, D., Grillenberger, J., Licht, T. and Witthuhn, W., Nucl. Inst. Meth. Phys. Res. B 136–138, 756 (1998).Google Scholar
9 Mitchel, W. C., Perrin, R., Goldstein, J., Saxler, A., Roth, M., Smith, S. R., Solomon, J. S. and Evwaraye, A. O., J. Appl. Phys. 86, 5040 (1999).Google Scholar
10 Götz, W., Schöner, A., Pensl, G., Suttrop, W., Choyke, W. J., Stein, R., and Leibenzeder, S., J. Appl. Phys. 73, 3332 (1993).Google Scholar
11 Lauer, V., Brémond, G., Souifi, A., Guillot, G., Chourou, K., Anikin, M., Madar, R., Clerjaud, B. and Naud, C., Mat. Sci. Eng. B61–62, 248 (1999).Google Scholar
12 Schneider, J., Müller, H. D., Maier, K., Wilkening, W., Fuchs, F., Dörnen, A., Leibenzeder, S. and Stein, R., Appl. Phys. Lett. 56, 1184 (1990).Google Scholar
13 Käckell, P., Wezien, B. and Bechstedt, F., Phys. Rev. B 50, 10761 (1994).Google Scholar