Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T02:50:39.019Z Has data issue: false hasContentIssue false

Elastic behavior of fibre-textured gold films by combining synchrotron X-ray diffraction and in-situ tensile testing

Published online by Cambridge University Press:  01 February 2011

D. Faurie
Affiliation:
Laboratoire de Métallurgie Physique, UMR 6630 CNRS - Université de Poitiers, SP2MI, Bd Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France.
P.-O. Renault
Affiliation:
Laboratoire de Métallurgie Physique, UMR 6630 CNRS - Université de Poitiers, SP2MI, Bd Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France.
E. Le Bourhis
Affiliation:
Laboratoire de Métallurgie Physique, UMR 6630 CNRS - Université de Poitiers, SP2MI, Bd Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France.
P. Goudeau
Affiliation:
Laboratoire de Métallurgie Physique, UMR 6630 CNRS - Université de Poitiers, SP2MI, Bd Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France.
Get access

Abstract

The elastic behavior of gold thin films deposited onto Kapton substrate has been studied using in-situ tensile tester in a four-circle goniometer at a synchrotron beam line (LURE facility, France). Knowing the stress tensor in the film, the strong {111} fibre texture was taken into account using the Crystallite Group Method (CGM). CGM strain analysis allows predicting a non linear relationship between strain and sin2 Ψ obtained for the thin films due to the strong anisotropy of gold. In contrast, the average of strains in longitudinal and transversal directions varies linearly with sin2 Ψ. The evolution of the slope of these curves as a function of the applied stresses in the film allowed determining the single-crystal elastic constant s44 of thin gold films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Böhm, J., Gruber, P., Spolenak, R., Stierle, A., Wanner, A., Arzt, E., Review of Scientific Instruments, 75, 1110 (2004).Google Scholar
2. Noyan, I.C. and Cohen, J.B., Residual Stress Measurement by Diffraction and Interpretation, Springer, New York, 1987.Google Scholar
3. Hauk, V., Structural and residual stress analysis by non destructive methods: evaluation, application, assessment, Elsevier, Amsterdam, 1997.Google Scholar
4. Huang, H. and Spaepen, F., Acta. Mater. 48, 3251 (2000).Google Scholar
5. Kalkmann, A. J., Verbruggen, A. H., and Jaussen, G. L. A. M., Appl. Phys. Lett. 78, 2673 (2001).Google Scholar
6. Schiotz, J., Vegge, T., Tolle, F. D. Di, and Jacobsen, K. W., Phys. Rev. B 60, 11971 (1999)Google Scholar
7. Noyan, I. C., Sheikh, G., J. Mater. Res. 8, 764 (1992).Google Scholar
8. Renault, P.-O., Badawi, K.F., Bimbault, L., and Goudeau, Ph., Elkaïm, E. and Lauriat, J.P., Appl. Phys. Lett. 73, 1952 (1998).Google Scholar
9. Hommel, M., Kraft, O., Acta Mater. 49, 3935 (2001).Google Scholar
10. Kraft, O., Hommel, M., Arzt, E., Mater. Sci. Eng. A288, 209 (2000).Google Scholar
11. Badawi, K. F., Villain, P., Goudeau, Ph., Renault, P.-O., Appl. Phys. Lett. 80, 4705 (2002).Google Scholar
12. Gergaud, P., Labat, S., Thomas, O., Thin Solid Films 319, 9 (1998).Google Scholar
13. Labat, S., Gergaud, P., Thomas, O., Gilles, B., Marty, A., J. Appl. Phys. 87, 1172 (2000).Google Scholar
14. Tanaka, K., Akiniwa, Y., Ito, T., Inoue, K., JMSE Series A 42, 224 (1999).Google Scholar
15. Renault, P. -O., Bourhis, E. Le, Villain, P., Goudeau, Ph., Badawi, K. F., Faurie, D., Appl. Phys. Letters 83, 473 (2003).Google Scholar
16. Smithells, J. C., Metals Reference Book, 5th edition (Butterworths, London, 1976).Google Scholar
17. Faurie, D., Renault, P.-O., Bourhis, E. Le, Goudeau, P., in preparation.Google Scholar
18. Welzel, U., private communication (2004).Google Scholar