No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
We have studied diamond films grown by electron cyclotron resonance-assisted chemical vapor deposition (ECR-CVD) at low pressure (1.0 Torr) and temperatures (550–700 °C). These films were grown on seeded Si (111) substrates with different diamond seed densities (0.225, 1.5, 2.3, and 3.1 × 109 nuclei/cm2). Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy (RS) were employed to investigate the crystalline quality, diamond yield, and stresses developed in the films as a function of seeding density. Thermal interfacial stress, interactions across grain boundaries, and internal stress were considered in order to account for the total stress observed from the Raman band. We present correlations among seed density, relative amount of non-sp3 phase, O/C ratio, and total intrinsic stress.