Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T00:49:22.408Z Has data issue: false hasContentIssue false

Effects of morphology of buffer layers on ZnO/sapphire heteroepitaxial growth by RF magnetron sputtering

Published online by Cambridge University Press:  10 February 2015

Tomoaki Ide
Affiliation:
Kyushu University, Motooka 744, Fukuoka, 819-0395, Japan
Koichi Matsushima
Affiliation:
Kyushu University, Motooka 744, Fukuoka, 819-0395, Japan
Ryota Shimizu
Affiliation:
Kyushu University, Motooka 744, Fukuoka, 819-0395, Japan
Daisuke Yamashita
Affiliation:
Kyushu University, Motooka 744, Fukuoka, 819-0395, Japan
Hynwoong Seo
Affiliation:
Kyushu University, Motooka 744, Fukuoka, 819-0395, Japan
Kazunori Koga
Affiliation:
Kyushu University, Motooka 744, Fukuoka, 819-0395, Japan
Masaharu Shiratani
Affiliation:
Kyushu University, Motooka 744, Fukuoka, 819-0395, Japan
Naho Itagaki
Affiliation:
Kyushu University, Motooka 744, Fukuoka, 819-0395, Japan JST PRESTO, Gobancho, Chiyodaku, Tokyo, 102-0076, Japan
Get access

Abstract

Effects of surface morphology of buffer layers on ZnO/sapphire heteroepitaxial growth have been investigated by means of “nitrogen mediated crystallization (NMC) method”, where the crystal nucleation and growth are controlled by absorbed nitrogen atoms. We found a strong correlation between the height distribution profile of NMC-ZnO buffer layers and the crystal quality of ZnO films. On the buffer layer with a sharp peak in height distribution, a single-crystalline ZnO film with atomically-flat surface was grown. Our results indicate that homogeneous and high-density nucleation at the initial growth stages is critical in heteroepitaxy of ZnO on lattice mismatched substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hwang, D. K., Kang, S. H., Lim, J. H., Yang, E. J., Oh, J. Y., Yang, J. H., and Parket, S. J., Appl. Phys. Lett. 86, 222101 (2005).CrossRefGoogle Scholar
Nakahara, K., Akasaka, S., Yuji, H., Tamura, K., Fujii, T., Nishimoto, Y., Takamizu, D., Sasaki, A., Tanabe, T., Takasu, H., Amaike, H., Onuma, T., Chichibu, S. F., Tsukazaki, A., Ohtomo, A., and Kawasaki, M., Appl. Phys. Lett. 97, 013501 (2010).CrossRefGoogle Scholar
Guo, X. L., Choi, J. H., Tabata, H. and Kawai, T., Jpn. J. Appl. Phy. 40, 177 (2001).CrossRefGoogle Scholar
Lim, J. H., Kang, C. K., Kim, K. K., Park, I. K., Hwang, D. K., and Park, S. J., Adv. Mater. 18, 2720 (2006).CrossRefGoogle Scholar
Vispute, R. D., Talyansky, V., Trajanovic, Z., Choopun, S., Downes, M., Sharma, R. P., Venkatesan, T., Woods, M. C., Lareau, R. T., Jones, K. A., and Iliadis, A. A., Appl. Phys. Lett. 70, 2735 (1997).CrossRefGoogle Scholar
Coleman, V. A., Bradby, J. E., Jagadish, C., Munroe, P., Heo, Y. W., Pearton, S. J., Norton, D. P., Inoue, M., and Yano, M., Appl. Phys. Lett. 86, 2013105 (2005)CrossRefGoogle Scholar
Nakamura, T., Yamada, Y., Kusumori, T., Minoura, H., and Muto, H., Thin Solid Films 411, 6064 (2002).CrossRefGoogle Scholar
Yan, J. F., Lu, Y. M., Liu, Y. C., Lianga, H. W., Li, B. H., Shen, D. Z., Zhang, J. Y., and Fan, X. W., J. Cryst. Growth 266, 505 (2004).CrossRefGoogle Scholar
Akasaki, I., Amano, H., Koide, Y., Hiramatshu, K., and Sawai, N., J. Cryst. Growth 98, 209219 (1989).CrossRefGoogle Scholar
Itagaki, N., Kuwahara, K., Matsushima, K., Yamashita, D., Seo, H., Koga, K., and Shiratani, M., Opt. Eng. 53, 087109 (2014).CrossRefGoogle Scholar
Itagaki, N., Kuwahara, K., Nakahara, K., Yamashita, D., Uchida, G., Koga, K., and Shiratani, M., Appl. Phys. Express 4, 011101 (2011).CrossRefGoogle Scholar
Kuwahara, K., Itagaki, N., Nakahara, K., Yamashita, D., Uchida, G., Kamataki, K., Koga, K., and Shiratani, M., Thin Solid Films 520, 4674 (2012).CrossRefGoogle Scholar
Suhariadi, I., Oshikawa, K., Kuwahara, K., Matsushima, K., Yamashita, D., Uchida, G., Koga, K., Shiratani, M., and Itagaki, N., Jpn. J. Appl. Phys. 52, 11NB03 (2013).CrossRefGoogle Scholar
Jung, Y. S., No, Y. S., Kim, J. S., and Choi, W. K., J. Cryst. Growth 267, 85 (2004).CrossRefGoogle Scholar
Yamada, T., Miyake, A., Kishimoto, S., Makino, H., Yamamoto, N., and Yamamoto, T., Surf. Coat. Tech. 202, 973 (2007).CrossRefGoogle Scholar
Wu, H. Z., He, K. M., Qiu, D. J., and Huang, D. M., J. Cryst. Growth 217, 131137 (2000).CrossRefGoogle Scholar
Williamson, G. K., and Hall, W. H., Acta Metallurgica 1, 22 (1953).CrossRefGoogle Scholar