Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T13:36:25.305Z Has data issue: false hasContentIssue false

The effects of Methane Concentration on diamond nucleation and growth during bias enhanced nucleation on 3C-SiC(100) surfaces

Published online by Cambridge University Press:  01 February 2011

Jean-Charles Arnault
Affiliation:
arnault@drecam.cea.fr, CEA Saclay, DSM/DRECAM/SPCSI, bâtiment 462, GIF SUR YVETTE, 91191, France, (33) 1 69 08 71 02, (33) 1 69 08 84 46
Samuel Saada
Affiliation:
samuel.saada@cea.fr, CEA Saclay, LIST/SSTM/DETECS/LTD, bâtiment 451, Gif sur Yvette, 91191, France
Luciana Intiso
Affiliation:
luciana.intiso@gmail.com, CEA Saclay, DSM/DRECAM/SPCSI, bâtiment 462, Gif sur Yvette, 91191, France
Philippe Bergonzo
Affiliation:
philippe.bergonzo@cea.fr, CEA Saclay, LIST/SSTM/DETECS/LTD, bâtiment 451, Gif sur Yvette, 91191, France
Get access

Abstract

The methane effects on nucleation and growth of diamond during bias enhanced nucleation treatment have been studied on 3C-SiC (100) surfaces. At low methane concentration of 1%, no diamond nucleation was observed, whether at 3 %, nucleation density values as high as 4×1010/cm2 were reached. A further increase of the methane concentration up to 5% induces a significant enhancement of the diamond nucleation density that was observed only slightly higher at 7×1010/cm2. Moreover, the Field Emission Gun Scanning Electron Microscopy (FEG-SEM) pictures well emphasized that the methane content affects both the nucleation and growth mechanisms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yugo, S., Kanai, T., Kimura, T., Muto, T., Appl. Phys. Lett. 58, 1036 (1991).10.1063/1.104415Google Scholar
2. Jiang, X., Schiffmann, K., Klages, C.P., Wittorf, D., Jia, C.L., Urban, K., J. of Appl. Phys. 83, 2511 (1998).Google Scholar
3. Stoner, B.R. and Glass, J.T., Appl. Phys. Lett. 60, 698 (1992).10.1063/1.106541Google Scholar
4. Schreck, M., Hörmann, F., Roll, H., Bauer, T. and Stritzker, B., New Diam. and Frontier Carbon Technol. 11, 189 (2001).Google Scholar
5. private communication, CEA DRT/LIST/DETECS/SSTM report-05/043.Google Scholar
6. Suesada, T., Nakamura, N., Nagasawa, H. and Kawarada, H., Jpn J. Appl. Phys. 34, 4898 (1995).Google Scholar
7. Tanuma, S., Powell, C.J. and Penn, D.R., Surf. Interf. Analysis 11, 577 (1988).Google Scholar
8. Powell, C. J., Jablonski, A., Naumkin, A., Kraut-Vass, A., Conny, J. M., and Rumble, J. R. Jr, J. Electron Spectrosc. Relat. Phenom. 114–116, 1097 (2001).Google Scholar
9. Arnault, J.C., Delclos, S., Saada, S., Tranchant, N., Bergonzo, Ph. J. Appl. Phys. (in press).Google Scholar
10. Lifshitz, Y., Meng, X.M., Lee, S.T., Akhveldiany, R., Hoffman, A., Phys. Rev. Lett. 93, 056101 (2004).10.1103/PhysRevLett.93.056101Google Scholar
11. Arnault, J.C., Intiso, L., Saada, S., Delclos, S., Bergonzo, P. and Polini, R. (unpublished).Google Scholar
12. Avrami, M., J.Chem.Phys. 7, 1103 (1939); 8, 212 (1940).10.1063/1.1750380Google Scholar
13. Fanfoni, M., Polini, R., Sessa, V., Tomellini, M., Volpe, M., Appl. Surf. Sci. 152, 126 (1999).Google Scholar
14. Polini, R. and Tomellini, M., Diam. Relat. Mater. 2, 952 (1993).Google Scholar