Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T18:02:14.470Z Has data issue: false hasContentIssue false

Effects of Magnetic Field and Hydrostatic Pressure on Martensitic Transformations in Some Shape Memory Alloys

Published online by Cambridge University Press:  10 February 2011

T. Kakcshita
Affiliation:
Department of Materials Science and Engineering, Faculty of Engineering, Osaka University, 2–1, Yamada-oka, Suita 565, Japan.
T. Saburi
Affiliation:
Department of Materials Science and Engineering, Faculty of Engineering, Osaka University, 2–1, Yamada-oka, Suita 565, Japan.
K. Shimizu
Affiliation:
Department of Materials Science and Engineering, Faculty of Engineering, Kanazawa Institute of Technology, 7–1 Ohgiga-oka, Nonoichi, Ishikawa 921, Japan.
Get access

Abstract

The recent works carried by the author's group on the effects of magnetic field and hydrostatic pressure on martensitic transformation are reviewed, which mainly concerned with some shape memory allovs, such as Fe-Pt, Fe-Co-Ni-Ti, Ti-Ni and Cu-Al-Ni alloys. The works clarify the effects of magnetic field and hydrostatic pressure on martensitic transformation temperature, magnetoelastic martensitic transformation and morphology and arrangement of martensites and transformation process of athermal transformation. That is, transformation start temperatures in Fe-Pt and Fe-Ni alloys examined increase with increasing magnetic field, but are not affected in Ti-Ni and Cu-Al-Ni alloys. On the other hand, transformation start temperature decreases with increasing hydrostatic pressure in the Fe-Ni-Co-Ti alloy, but increases in Cu-Al-Ni alloys. The magnetic field and hydrostatic pressure dependences of the martensitic start temperature are in good agreement with those calculated by the equations proposed by our group. In the work on the ausaged Fe-Ni-Co-Ti alloy, the appearance of magnetoelastic martensitic transformation is newly found. In addition, several martensite plates grow nearly parallel to the direction of applied magnetic field in the specimen of an Fe-Ni alloy single crystal. Moreover, we found that in the Cu-Al-Ni alloys exhibiting an athermal martensitic transformation, isothermal holding at a temperature above Ms makes martensitic transformation to start and the incubation time increases with increasing ΔT = T − Ms (T represents holding temperature). The above results show that the magnetic field and hydrostatic pressure effectively control not only the transformation temperature but also the morphology and distribution of martensites induced, as in the case of uniaxtial stress and compression.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Patel, J. R., and Cohen, M., Acta Metall., 1, p.531536 (1953).Google Scholar
2. Otsuka, K., Sakamoto, H., and Shimizu, K., Acta Metall., 24, p.585601 (1976).Google Scholar
3. Sadovsky, V. D., Smirnov, L. V., Fokina, Ye., Malinen, P. A., and Soroskin, I. P., Fiz. Met. Metalloved., 27, p.918939 (1967).Google Scholar
4. Kakeshita, T., Shimizu, K., Funada, S., and Date, M., Acta Metall., 33, p. 1,381–1,389 (1985).Google Scholar
5. Kakeshita, T., Shimizu, K., Funada, S., and Date, M., Trans. Jpn. Inst. Met., 25, p.837844 (1984).Google Scholar
6. Kakeshita, T., Shimizu, K., Kijima, S., Yu, T., and Date, M., Trans. Jpn. Inst. Met., 26, p.630637 (1985).Google Scholar
7. Kakeshita, T., Shirai, H., Shimizu, K., Sugiyama, K., Hazumi, K., and Date, M., Trans. Jpn. Inst. Met., 28, p.891897 (1987).Google Scholar
8. Chikazumi, S., and Miura, N., ed., Physics in High Magnetic Fields (Springer, Berlin, 1981), 44.Google Scholar
9. Kakeshita, T., and Shimizu, K., Proc. ICOMAT-86, Nara, Japan, 230235.Google Scholar
10. Kaufman, L.: referred to Doctor Thesis by Korenko, M. K., MIT, Cambridge, USA, (1973), p. 72.Google Scholar
11. Tong, H. C. and Wayman, C. M., Acta Met., 22, p.887893 (1974).Google Scholar
12. Grangle, J., and Hallame, G. C., Proc. Roy. Soc., A272, p.119132 (1963).Google Scholar
13. Oomi, G., and Mori, M., Physica 119B, p.149153 (1983).Google Scholar
14. Tadaki, T., Katsuki, K. and Shimizu, K., Trans. JIM, 17, p.187192 (1976).Google Scholar
15. Kakeshita, T., Shimizu, K., Maki, T., Tamura, I., Kijima, S., and Date, M., Scripta Metall., 19, p. 973 (1985).Google Scholar
16. Kakeshita, T., Furikado, S., Shimizu, K., Kijima, K. and Date, M., Trans. Jpn. Inst. Met., 27, p.477483 (1986).Google Scholar
17. Kakeshita, T., Yamamoto, T., Shimizu, K., Nakamichi, S., Endo, S., and Ono, F., Materials Transactions, JIM, 36, p.483489 (1995).Google Scholar
18. Kakeshita, T., Shimizu, K., Nakamichi, S., Tanaka, R., Endo, S. and Ono, F., Trans. Jpn. Inst. Met., 32, p.16 (1992).Google Scholar
19. Kakeshita, T., Shimizu, K., Tanaka, R., Nakamichi, S., Endo, S., and Ono, F., Trans. Jpn. Inst. Met., 32, p. 1,115–1,119 (1991).Google Scholar
20. Kakeshita, T., Shimizu, K., Endo, S., Akahama, Y., and Fujita, F. E., Trans. Jpn. Inst. Met., 30, p.157164 (1989).Google Scholar
21. Kakeshita, T., Yoshimura, Y., Shimizu, K., Endo, S., Akahama, Y., and Fujita, F. E., Trans. Jpn. Inst. Met., 29, p.781789 (1988).Google Scholar
22. Ono, F., Asano, M., Tanaka, R., and Endo, S., J. Magnetet. Magn. Mater., 90, 91, p.737739 (1990).Google Scholar
23. Chernenko, V. A., Journal de Physique, 5, C2-p. 77 (1995).Google Scholar
24. Saito, H., ed., Physics and Applications of Invar Alloys (Tokyo: Maruzen, 1978), 372.Google Scholar
25. Kurdjumov, G. V., and Maksimova, O. P., Doklady Akademii Nauk SSSR, 61, p.8393 (1948).Google Scholar
26. Kakeshita, T., Kuroiwa, K., Shimizu, K., Ikeda, T., Yamagishi, A. and Date, M., Materials Transactions, JIM, 34, p.415422 (1993).Google Scholar
27. Kakeshita, T., Kuroiwa, K., Shimizu, K., Ikeda, T., Yamagishi, A., and Date, M., Materials Transactions, JIM, 34, p.423428 (1993).Google Scholar
28. Kakeshita, T., Yamamoto, T., Shimizu, K., Sugiyama, K. and Endo, S., Materials Transactions, JIM, 36, p. 1,018–1,022 (1995).Google Scholar
29. Kakeshita, T., Takeguchi, T., Fukuda, T. and Saburi, T., Materials Transactions, JIM, 37, p.299303 (1996).Google Scholar
30. Kakeshita, T., Fukuda', T. and Saburi, T., Scripta Materialia 34, p.147150 (1996).Google Scholar