Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T23:39:33.614Z Has data issue: false hasContentIssue false

The Effects of Amorphous Layer Regrowth on Carbon Activation in GaAs and InP

Published online by Cambridge University Press:  22 February 2011

A.J. Moll
Affiliation:
Center for Advanced Materials, Materials Sciences Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road Berkeley, CA 94720 Materials Science and Mineral Engineering, University of California at Berkeley, Berkeley, CA 94720
J.W. Ager III
Affiliation:
Center for Advanced Materials, Materials Sciences Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road Berkeley, CA 94720
K.M. Yu
Affiliation:
Center for Advanced Materials, Materials Sciences Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road Berkeley, CA 94720
W. Walukiewicz
Affiliation:
Center for Advanced Materials, Materials Sciences Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road Berkeley, CA 94720
E.E. Haller
Affiliation:
Center for Advanced Materials, Materials Sciences Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road Berkeley, CA 94720 Materials Science and Mineral Engineering, University of California at Berkeley, Berkeley, CA 94720
Get access

Abstract

The effect of the Ga dose on the activation of implanted carbon in GaAs is determined. The free hole concentration is found to depend on the depth of the amorphous layer created by the Ga co-implant. Initial results on C implantation in InP indicate the behavior of C is very different in InP when compared to GaAs. The role of precipitation in reducing the activation of C in both GaAs and InP is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Lindhard, J., Scharff, M. and Schiott, H.E., Kfl. Danske. Videnskab. Selskab. Mat.-Fys. Medd. 33, (1963).Google Scholar
2 Cunningham, B.T., Guido, L.J., Baker, J.E., Major, J.S. Jr., Holonyak, N. Jr. and Stillman, G.E., Appl. Phys. Lett. 55, 687 (1989).Google Scholar
3 Pearton, S.J. and Abernathy, C.R., Appl. Phys. Lett. 55, 678 (1989).Google Scholar
4 Moll, A.J., Yu, K.M., Walukiewicz, W., Hansen, W.L. and Haller, E.E., Appl. Phys. Lett. 60, 2383 (1992).Google Scholar
5 Moll, A.J., Ager, J.W. III, Yu, K.M., Walukiewicz, W. and Haller, E.E., J. Appl. Phys. 74, 7118 (1993).Google Scholar
6 Yu, K.M. and Moll, A.J., unpublishedGoogle Scholar
7 Csepregi, L., Kullen, R.P. and Mayer, J.W., Solid State Commun. 21, 1019 (1977).Google Scholar
8 Csepregi, L., Kennedy, E.F., Mayer, J.W. and Signon, T.W., J. Appl. Phys. 49, 3906 (1978).Google Scholar
9 Moll, A.J., Haller, E.E., Ager, J.W. III and Walukiewicz, W., submitted to Appl. Phys. Lett. (1993).Google Scholar
10 You, H.M., Tan, T.Y., Gösele, U.M., Lee, S.T., Höfler, G.E., Hsieh, K.C. and Holonyak, N. Jr., J. Appl. Phys. 74, 2450 (1993).Google Scholar
11 Pearton, S.J., Chakrabarti, U.K., Abernathy, C.R. and Hobson, W.S., Appl. Phys. Lett. 55, 2014 (1989).Google Scholar