Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T19:44:45.349Z Has data issue: false hasContentIssue false

Effective Medium Approach For Calculation of Linear and Nonlinear Properties of Porous Semiconductor Composites.

Published online by Cambridge University Press:  01 February 2011

Vladimir Kochergin
Affiliation:
Lake Shore Cryotronics, Inc., Columbus, OH 43082, USA Tel. (614) 891 2243; Fax. (614) 818 1607; e-mail vkochergin@lakeshore.com
Helmut Föll
Affiliation:
Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel, Kaiserstr. 2, 24143 Kiel, Germany
Get access

Abstract

The general methodology of calculating linear and nonlinear properties of nanoporous and nanostructured semiconductor materials and composites is presented. A Maxwell-Garnett approach is generalized for the case of porous semiconductor materials composed of a number of differently oriented pore lattices. Specifically, the cases of electrochemically etched mesoporous silicon on (110)-oriented substrate and electrochemically-etched porous InP and GaAs materials on (100) substrates are considered. The observed optical anisotropy of mesoporous Si is explained. A biaxial anisotropy of the porous InP or GaAs material with crystallographic pores is predicted.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Föll, H., Langa, S., Carstensen, J., Christophersen, M., and Tiginyanu, I.M., Adv. Materials, 15, 183 (2003).Google Scholar
2 Vincent, G., Appl. Phys. Lett. 64, 2367 (1994).Google Scholar
3 Pellegrini, V., Tredicucci, A., Mazzoleni, C., and Pavesi, L., Phys. Rev. B 52, 14328 (1995).Google Scholar
4 Kochergin, V., Omnidirectional Optical Filters (Kluwer Academic Publishers, Boston, 2003).Google Scholar
5 Diener, J., Künzner, N., Kovalev, D., Gross, E., Timoshenko, V. Yu., Polisski, G., and Koch, F., Appl. Phys. Lett. 78, 3887 (2001).Google Scholar
6 Bruggeman, D.A.G., Ann. Phys. (Paris) 24, 636 (1935).Google Scholar
7 Looyenga, H., Physica 31, 401(1965).Google Scholar
8 Zettner, J., Thoenissen, M., Hierl, Th., Brendel, R., and Schulz, M.: Progress in Photovoltaics: Research and Applications 6, 423 (1999).Google Scholar
9 Kochergin, V., Christophersen, M., and Föll, H., Appl. Phys. B, 79, 731739 (2004).Google Scholar
10 Cullis, A.G., Canham, L.T., and Calcott, P.D.J., J. Appl. Phys. 82, 909 (1997).Google Scholar
11 Lehmann, V., Stengl, R., and Luigart, A., Materials science and engineering B, 69-70, 11(2000).Google Scholar
12 Faivre, C., and Bellet, D., J. Appl. Cryst. 32, 1134 (1999).Google Scholar
13 Kovalev, D., Polisski, G., Diener, J., Heckler, H., Künzner, N., Timoshenko, V. Yu., and Koch, F., Appl. Phys. Lett. 78, 916 (2001).Google Scholar
14 Kochergin, V., Christophersen, M., and Föll, H., Appl. Phys. Lett. 86, 042108 (2005).Google Scholar