Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T14:52:27.675Z Has data issue: false hasContentIssue false

Effective Dielectric function of a Composite with Aligned Spheroidal Inclusions

Published online by Cambridge University Press:  25 February 2011

Ruben G. Barrera
Affiliation:
Instituto de Física, UNAM, Apdo. Postal 20-364, 01000 México D.F., México
Jairo Giraldo
Affiliation:
Departamento de Fíesica, Universidad Nacional de Colombia, Bogotá, Colombia.
W. Luis Mochan
Affiliation:
Laboratorio de Cuernavaca, Instituto de Física, UNAM, Apartado Postal 139-8, 62190 Cuernavaca, México
Get access

Abstract

The effective dielectric response εM of a composite with aligned spheroidal inclusions is calculated. Using the dipolar and the mean-field approximation (MFA) an analytical expression for εM as a functional of the two-particle distribution function p(2) is obtained. It is shown that previous expressions reported in the literature correspond to different choices of p(2), thus, clarifying the origin of their discrepancies. The theory is further extended beyond the MFA by including the dipolar fluctuations through a renormalization of the polarizability tensor of the inclusions. The absorption peaks are diminished and broadened by the spatial disorder, which also yields an easily identified coupling among electromagnetic modes with perpendicular polarizations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. A review of the early history of this subject is given by Landauer, R., in Electrical transport and optical properties of inhomogeneous media, edited by Garland, J.C. and Tanner, D.B. AIP Conference Proceedings No. 40 (AIP, New York 1978), p. 2.Google Scholar
2. See, for example: Cusack, N.E., The Physics of Structurally Disordered Matter (Adam Hilger, Bristol, 1987).Google Scholar
3. Niklasson, G.A. and Granqvist, C.G. in Contribution of Cluster Physics to Materials Science and Technology, edited by Davenas, J. and Rabette, P.M., NATO ASI series No. 104 (M. Nijhoff Pub., Dordrecht, 1986), p. 539.Google Scholar
4. Sen, P.N., Scala, C. and Cohen, M.H., Geophysics 46, 781 (1981) and references therein; L.C. Sheu, C.Liu, J. Korringa and K.J. Dunn, J. App. Phys. 67, 7071 (1990).Google Scholar
5. Asami, K., Hanoi, T. and Koizumi, N., Japanese J. App. Phys. 19, 359 (1980); J.M. Tean, C. K. Chan, G.R. Flemming and T. Gowens, Biophys. J. 56, 1203 (1989); J.O. Brénander, P. Apell and T. Gillbro, unpublished.Google Scholar
6. See for example the proceedings of references 1 and 3. Confer also: a) Physics and Chemistry of Porous Media edited by Johnson, D.L. and Sen, P.N., AIP Conference Proceedings No. 107, (AIP, New York 1984); b) Electrodynamics of interfaces and composite systems, edited by R.G. Barrera and W.L. Mochdn (World Scientific, Singapore, 1988); c) Thin films and small particles, edited by M. Cardona and J. Giraldo (World Scientific, Singapore, 1989); d) ETOPIM 2, edited by J. Lafait and D.B. Tanner, Physica A 157 (1990);Google Scholar
7. See for example: Barrera, R.G., Monsivais, G., Mochin, W.L. and Anda, E., Phys. Rev. B 39, 9998 (1989) and references therein.CrossRefGoogle Scholar
8. Maxwell, J. C. Garnett, Philos Trans. Roy. Soc. London 203, 385 (1904); 205, 237 (1906).Google Scholar
9. See, for example, Jackson, J. D., Classical Electrodynamics (J. Wiley and Sons, 2nd. ed., New York, 1975), pg. 155.Google Scholar
10. Lorentz, H.A., The Theory of Electrons, (B.G. Teubner, Leipzig, 909; Reprint: Dover, New York, 1952); Ann. Phys. Chem. 9, 641 (1880).Google Scholar
11. Wiener, O., Abh. Math.-Phys. Sichs. Ges. Wiss. 32, 509 (1912).Google Scholar
12. Bragg, W.L. Pippard, y A.B., Acta Cryst. 6, 865 (1953).Google Scholar
13. Cohen, R.W., Cody, G.D., Couts, M.D. and Abeles, B., Phys. Rev. B 8, 3689 (1973).CrossRefGoogle Scholar
14. Galeener, F.L., Phys. Rev. Lett. 27, 421 (1971).Google Scholar
15. Barrera, R.G., Monsivais, G. and Mochèin, W. L., Phys. Rev. B 38, 5371 (1988).Google Scholar
16. Niklasson, G.A. and Granquist, C.G., J. Appl. Phys. 55, 3382 (1984).Google Scholar