Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T14:23:05.426Z Has data issue: false hasContentIssue false

Effect of Surface Plasmon Resonance on the Photoluminescence from Si Quantum Dot Structures for Third Generation Solar Cell Applications

Published online by Cambridge University Press:  25 May 2012

Supriya Pillai
Affiliation:
ARC Photovoltaic Centre of Excellence, University of New South Wales, Sydney 2052, NSW Australia
Joel J. Hohn
Affiliation:
ARC Photovoltaic Centre of Excellence, University of New South Wales, Sydney 2052, NSW Australia
Craig M. Johnson
Affiliation:
ARC Photovoltaic Centre of Excellence, University of New South Wales, Sydney 2052, NSW Australia Optoelectronics Laboratory, School of Physics, University of New South Wales, Sydney 2052, NSW Australia
Gavin J. Conibeer
Affiliation:
ARC Photovoltaic Centre of Excellence, University of New South Wales, Sydney 2052, NSW Australia
Get access

Abstract

Low dimensional structures like quantum dots (QDs) offers the the ability to tune the absorption properties of standard semiconductor materials. However, QDs are relatively weak light absorbers and hence may benefit significantly from coupling with plasmonic modes in nearby metal structures. In the case of a Si QD absorber layer for photovoltaic applications, enhanced absorption would lead to improved power conversion efficiency. Silver metal nanoparticles (MNPs) were deposited on Si QD structures using the self-assembly method of evaporation and annealing. Room temperature photoluminescence (PL) measurements were used to study the surface plasmon (SP) enhanced emission from the samples. The results were compared to conventional metal back reflectors. Enhanced surface plasmon coupled emission (SPCE) from Si QDs in the vicinity of silver metal nanoparticles (MNPs) is observed with a good correlation between the enhancement and the resonance excitation. Quenching was observed from the same emitter layers placed in close proximity to thin flat silver reflector layers, indicating the importance of the spacer layer between a metal layer and the quantum dots in optimising enhancement. The results have implications for the design of SP-enhanced QD solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cho, E.-C., Park, S., Hao, X., Song, D., Conibeer, G., Park, S.-C., Green, M.A., Nanotech. 19, (2008).Google Scholar
2. Green, M.A., Third Generation Photovoltaics, Springer Verlag, Berlin, 2003.Google Scholar
3. Atwater, H., Polman, A., Nat. Mater. 9, 205213 (2010).Google Scholar
4. Pillai, S., Green, M.A., Sol. Energy Mater. Sol. Cells. 94, 14811486 (2010).Google Scholar
5. Pillai, S., Catchpole, K.R., Trupke, T., Green, M.A., J. Appl. Phys. 101, 093105 (2007).Google Scholar
6. Derkacs, D., Lim, S.H., Matheu, P., Mar, W., Yu, E.T., Appl. Phys. Lett. 89, 093103 (2006).Google Scholar
7. Morfa, A.J., Rowlen, K.L., T.H.R. III, M.J. Romero, J.v.d. Lagemaatb, Appl. Phys. Lett. 92, 013504 (2008).Google Scholar
8. Nakayama, K., Tanabe, K., Atwater, H.A., Appl. Phys. Lett. 93 121904 (2008).Google Scholar
9. Ouyang, Z., Pillai, S., Beck, F., Kunz, O., Varlamov, S., Catchpole, K.R., Campbell, P., Green, M.A., App. Phys. Lett. 96, 261109 (2010).Google Scholar
10. Catchpole, K.R., Polman, A., Appl. Phys. Lett. 93, 191113 (2008).Google Scholar
11. Yablonovitch, E., J. Opt. Soc. Am. A 72, 899 (1982).Google Scholar
12. Yu, Z., Raman, A., Fan, S., Appl. Phys. A, DOI 10.1007/s00339-00011-06617-00334 (2011).Google Scholar
13. Pillai, S., Catchpole, K.R., Trupke, T., Zhang, G., Zhao, J., Green, M.A., Appl. Phys. Lett. 88, 161102 (2006).Google Scholar
14. Biteen, J.S., Pacifici, D., Lewis, N.S., Atwater, H.A., Nano Lett. 5, 1768 (2005).Google Scholar
15. Okamoto, K., Vyawahare, S., Scherer, A., J. Opt. Soc. Am. B 23, 16741678 (2006).Google Scholar
16. Pillai, S., Perez-Wurfl, I., Conibeer, G.J., Green, M.A., Physica Stat. Solidi (C) 8, 181184 (2011).Google Scholar
17. Giessen, H., Lippitz, M., Science 329, 910911 (2010).Google Scholar
18. Kalkman, J., Gersen, H., Kuipers, L., Polman, A., Phys. Rev. B 73, 075317 (2006).Google Scholar
19. Biteen, J.S., Lewis, N.S., Atwater, H.A., Appl. Phys. Lett. 88, 131109 (2006).Google Scholar
20. Akimov, A.V., Mukherjee, A., Yu, C.L., Chang, D.E., Zibrov, A.S., Hemmer, P.R., Park, H., Lukin, M.D., Nature 450, 402406 (2007).Google Scholar