Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T11:39:51.891Z Has data issue: false hasContentIssue false

Effect of Stoichiometry of TiN Electrode on the Switching Behavior of TiN/HfOx/TiN Structures for Resistive RAM

Published online by Cambridge University Press:  17 February 2014

Katrina A. Morgan
Affiliation:
Nano Research Group, Electronics and Computer Science, University of Southampton, Southampton, Hampshire, SO171BJ, UK.
Ruomeng Huang
Affiliation:
Nano Research Group, Electronics and Computer Science, University of Southampton, Southampton, Hampshire, SO171BJ, UK.
Stuart Pearce
Affiliation:
Nano Research Group, Electronics and Computer Science, University of Southampton, Southampton, Hampshire, SO171BJ, UK.
Le Zhong
Affiliation:
Engineering Materials Research Group, University of Southampton, Southampton, Hampshire, SO171BJ, UK.
Liudi Jiang
Affiliation:
Engineering Materials Research Group, University of Southampton, Southampton, Hampshire, SO171BJ, UK.
C. H. de Groot
Affiliation:
Nano Research Group, Electronics and Computer Science, University of Southampton, Southampton, Hampshire, SO171BJ, UK.
Get access

Abstract

Two types of TiN/HfOx/TiN devices have been fabricated where the top 200nm TiN electrode has been deposited by two different sputtering methods; reactive, using a titanium target in a nitrogen environment, and non-reactive, using a titanium nitride target. Characterization of the materials shows that the reactive TiN is single-phase stoichiometric TiN with a sheet resistance of 7Ω/square. The non-reactive TiN has a sheet resistance of 300Ω/square and was found to contain significant amounts of oxygen. The resistive switching behavior differs for both devices. The reactive stoichiometric TiN device results in bipolar switching with a Roff/Ron ratio of 50. The non-reactive TiN results in unipolar switching with a Roff/Ron ratio of more than 103, however this device shows poor reproducibility. These results show that an oxygen rich layer between the top electrode and insulator affects the Roff value. It supports the theory of oxygen vacancies leading to the formation of conductive filaments.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baek, I. G., Lee, M. S., Seo, D. H., Suh, D. –S., Park, J. C., Park, S. O., Kim, H. S., Yoo, I. K., Chung, U. –I., Moon, J. T., Electron Devices Meeting, IEDM Technical Digest. IEEE International, 587590(2004)Google Scholar
Philip Wong, H. -S., Lee, H. –Y., Yu, S., Chen, Y.-S., Wu, Y., Chen, P. –S., Lee, B., Chen, F. T., Tsai, M. –J., Proceedings of the IEEE., 100(6), 19511970 (2012)10.1109/JPROC.2012.2190369CrossRefGoogle Scholar
Waser, R., Microelectronic Engineering, 86 (7-9), 19251928 (2009)10.1016/j.mee.2009.03.132CrossRefGoogle Scholar
Lee, H. Y., Chen, P. S., Wu, T. Y., Chen, Y. S., Wang, C. C., Tzeng, P. J., Lin, C. H., Chen, F., Lien, C. H., Tsai, M. –J., Electron Devices Meeting. IEEE International, 14(2008)Google Scholar
Tran, X. A., Yu, H. Y., Yeo, Y. C., Wu, L., Liu, W. J., Wang, Z. R., Fang, Z., Pey, K. L., Sun, X. W., Du, A. Y., Nguyen, B. Y., Li, M. F., IEEE Electron Device Letters, 32(3), 396398 (2011)10.1109/LED.2010.2099205CrossRefGoogle Scholar
Lorenzi, P., Rao, R., Irrera, F., IEEE Transactions of Electron Devices, 60(1), 438443(2013)10.1109/TED.2012.2227324CrossRefGoogle Scholar
Cagli, C., Buckley, J., Jousseaume, V., Cabout, T., Salaun, A., Grampeix, H., Nodin, J. F., Fields, H., Persico, A., Cluzel, J., Lorenzi, P., Massari, L., Rao, R., Irrera, F., Aussenac, F., Carabasse, C., Coue, M., Calka, P., Martinez, E., Perniola, L., Blaise, P., Fang, Z., Yu, Y. H., Ghibaudo, G., Deleruyelle, D., Bocquet, M., Muller, C., Padovani, A., Pirrotta, O., Vandelli, L., Larcher, L., Reimbold, G., Salvo, B. de, IEDM, IEEE International, 28.7.1 – 28.7.4 (2011)Google Scholar
Stefano, F. De, Houssa, M., Afanas’ev, v. V., Kittl, J. A., Jurczak, M., Stesmans, A., Thin Solid Films, 533, 1518 (2013)10.1016/j.tsf.2012.12.097CrossRefGoogle Scholar
Warwick, M. E. A., Hyett, g., Ridley, I., Laffir, F. R., Olivero, C., Chapon, P., Binions, R., Solar Energy Materials and Solar Cells, 118, 149156 (2013)10.1016/j.solmat.2013.08.018CrossRefGoogle Scholar
Sawa, A., Materials Today, 11(6), 2836 (2008)10.1016/S1369-7021(08)70119-6CrossRefGoogle Scholar