Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T13:14:03.613Z Has data issue: false hasContentIssue false

Effect of Sodium Silicate Properties in Alkali-Activation of Mexican Blast Furnace Slag

Published online by Cambridge University Press:  01 March 2016

O. F. Cortés-Salmerón
Affiliation:
Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad No. 3000 Colonia Universidad Nacional Autónoma de México, 04510, Distrito Federal, México
M. L. García-Chávez
Affiliation:
Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad No. 3000 Colonia Universidad Nacional Autónoma de México, 04510, Distrito Federal, México
T. A. García-Mejía
Affiliation:
Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad No. 3000 Colonia Universidad Nacional Autónoma de México, 04510, Distrito Federal, México
Get access

Abstract

The present work is a study on alkali activation of Mexican blast furnace slag, using sodium silicate. The aim is to produce an optimal specimen, homogeneous without carbonation, and with small fraction of crystalline phases, similar to CSH, which provide mechanical properties suitable to use in the construction industry. The samples were prepared using sodium silicate activator solutions with modulus (SiO2/Na2O) of 1.25, 1.5, and 1.75. The weight percentage of Na2O in the activator solutions was added at 4, 6 and 8% relative to the slag weight. The prepared samples were stored in sealed molds, at room temperature (20°C), during 7 days. The X-ray diffraction has revealed the presence of an amorphous phase, semi crystalline clinotobermorite phase and signals of calcium carbonate for the samples of 4 and 6 % of Na2O; in contrast with the 8% Na2O, where the latter signals almost disappeared. The specimen selected as optimal was prepared with an activator concentration of 8% of Na2O /Slag, and SiO2/Na2O of 1.25. A specimen under these optimal conditions was prepared with accelerated curing (40°C, humidity, 48 hours), and a compressive strength test was attained, with an average value of 52 MPa at 3 days.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Purdon, A.O., J. Soc. Chem. Ind. 59, 191 (1940).Google Scholar
Richardson, I.G., Cem. Concr. Res. 34, 1733 (2004).CrossRefGoogle Scholar
Myers, R.J., Bernal, S.A., San Nicolas, R., Provis, J.L., Langmuir 29, 5294 (2013).CrossRefGoogle Scholar
Puertas, F., Palacios, M., Manzano, H., Dolado, J.S., Rico, A., Rodríguez, J., J. Eur. Ceram. Soc. 31, 2043 (2011).CrossRefGoogle Scholar
Garcia-Lodeiro, I., Palomo, a., Fernández-Jiménez, a., MacPhee, D.E., Cem. Concr. Res. 41, 923 (2011).CrossRefGoogle Scholar
Fernández-Jiménez, A., Palomo, J.G., Puertas, F., Cem. Concr. Res. 29, 1313 (1999).CrossRefGoogle Scholar
Wang, S.-D., Scrivener, K.L., Pratt, P.L., Cem. Concr. Res. 24, 1033 (1994).CrossRefGoogle Scholar
Sakulich, A.R., Anderson, E., Schauer, C.L., Barsoum, M.W., Mater. Struct. 43, 1025 (2010).CrossRefGoogle Scholar
Payne, J.W., Dodge, B.F., Ind. Eng. Chem. 24, 630 (1932).CrossRefGoogle Scholar
Puertas, F., Palacios, M., Vázquez, T., J. Mater. Sci. 41, 3071 (2006).CrossRefGoogle Scholar
Palacios, M., Puertas, F., J. Am. Ceram. Soc. 89, 3211 (2006).CrossRefGoogle Scholar