Published online by Cambridge University Press: 26 February 2011
Compressive creep behavior is investigated In polycrystalline Ni3Al intermetallic compounds in which the focus is put on the effect of offstoichiometry and ternary additions of Ti, Ta, V and Co on the creep resistance of the compounds. In all cases, the steady-state creep rate has the power-law type dependence on the applied stress. The stress exponent thereby obtained leads us to regard the creep behavior of the compound to be of the Class I type. It is shown that the creep resistance Increases with increasing Ni concentration on both sides of the stoichiometric Ni3Al composition and a discontinuity exists in the variation at stoichiometry. The gap at the discontinuity becomes clearer by the addition of ternary element in most cases as compared to the binary Ni3Al. Although the exact reason for the phenomenon is not clearly understood at present, it is shown that it could be interpreted by the concentration dependence of activation energy in the power-law type creep equation.