No CrossRef data available.
Published online by Cambridge University Press: 17 March 2011
We have used impedance spectroscopy to evaluate the effect of the presence of grain boundaries and plastic deformation, as caused by hardness indentation, on the electrical response of several commercial nickel base super-alloys at room temperature. These alloys consist of a mostly nickel matrix that contains small precipitates of intermetallic phases such as Ni3Al or Ni3Ti(often referred to as gamma prime) as a reinforcing phase. Measurements were made as point contacts so that data could be tracked from point to point. Results indicate that the grain boundaries tend to have higher conductivities than the individual grains in most cases. It is speculated that this is due to the boundary regions having a different compositional profile than the center of the grains(as determined by gamma prime size, shape and distribution). Hardness indentation, on the other hand, had a more dramatic effect, by causing the magnitude of the imaginary impedance to change in size as well as position. Complementary microscopy results are included as supporting evidence for the effects discussed.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.