Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T03:57:59.219Z Has data issue: false hasContentIssue false

Effect of Copper Sulfide nanocrystals in a Poly(3-hexylthiophene)/Titania solar cell

Published online by Cambridge University Press:  25 June 2013

Priscilla V. Quintana-Ramírez
Affiliation:
Posgrado en Ciencia e Ingeniería de Materiales, Centro de Física Aplicada y Tecnología, Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, Querétaro 76230, México.
M. C. Arenas*
Affiliation:
Departamento de Ingeniería Molecular de Materiales, CFATA, UNAM, Boulevard Juriquilla 3001, Querétaro, Querétaro 76230, México.
*
*Corresponding author: mcaa@fata.unam.mx, Phone: +52- 44 22381173 ext. 132, +52 55 5623 4173 ext. 132
Get access

Abstract

Poly(3-hexylthiophene)/Titania (P3HT/TiO2) heterojunction has been widely studied in the field of hybrid solar cells. Usually, organic dyes shift the neat TiO2 absorption edge toward the visible range improving the conversion efficiency or/and the TiO2 surface is modified with ligands in order to increase the electron transport. On the other hand, copper sulfide, non-toxic semiconductor, has been included in bulk organic P3HT based solar cell, increasing the photocurrent density of devices. Therefore, we propose the use of copper sulfide in the hybrid TiO2/P3HT heterojunction to determine its effect in the performance of TiO2/P3HT solar cell. Copper sulfide nanocrystals (CuxS) were synthesized at 230 °C, 240 °C and 260 °C and, they were mixed with P3HT in order to form P3HT:CuxS bulk heterojunctions. Scattered grains and irregular morphology in the final topography of the reference device (P3HT/TiO2 heterojunction) were observed by AFM, while a granular morphology and a few pores like craters were observed in the devices containing P3HT:CuxS bulk heterojunctions. Chalcocite phase (Cu2S) was obtained at 230 and 240°C and, digenite (Cu1.8S) phase at 260°C, both copper sulfide phases are very promising for solar cells. Despite this, poor rectifications in the devices were found in the current-voltage curves of the devices containing copper sulfide nanocrystals in contrast to the P3HT/TiO2 cell (device without nanocrystals), it could be due to the current leakage or recombination process in the copper sulfide/TiO2 interface. It suggests future work in order to improve the devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Özdal, T., Hameş, Y., Aslan, E., Appl. Surf. Sci. 258, 5259 (2012).CrossRefGoogle Scholar
Zeng, T.-W., Lo, H.-H., Chang, C.-H., Lin, Y.-Y., Chen, C.-W., Su, W.-F., Sol. Energy Mater. Sol. Cells 93, 952 (2009).CrossRefGoogle Scholar
Baek, W.-H., Seo, I., Yoon, T.-S., Lee, H. H., Yun, C. M., Kim, Y.-S., Sol. Energy Mater. Sol. Cells 93, 1587 (2009).CrossRefGoogle Scholar
Gerein, N. J., Fleischauer, M. D., Brett, M. J., Sol. Energy Mater. Sol. Cells 94, 2343 (2010).CrossRefGoogle Scholar
Bhongale, C. J., Thelakkat, M., Sol. Energy Mater. Sol. Cells 94, 817 (2010).CrossRefGoogle Scholar
Hsu, C. W., Wang, L., Su, W. F., J. Colloid Interface Sci. 329, 182 (2009).CrossRefGoogle Scholar
Goh, C., Scully, S. R., McGehee, M. D., J. Appl. Phys. 101, 114503 (2007)CrossRefGoogle Scholar
Gunes, S., Marjanovic, N., Nedeljkovic, J. M., Sariciftci, N. S., Nanotechnology 19, 424009 (2008)CrossRefGoogle Scholar
Luo, J., Liu, C., Yang, S., Cao, Y., Sol. Energy Mater. Sol. Cells 94, 501 (2010).CrossRefGoogle Scholar
Chang, J. A., Rhee, J. H., Im, S. H., Lee, Y. H., Kim, H., Seok, S. I., Nazeeruddin, M. K., Gratzel, M., Nano Lett. 10, 2609 (2010).CrossRefGoogle Scholar
Wu, Y., Wadia, C., Ma, W., Sadtler, B., Alivisatos, A. P., Nano Lett. 8, 2551 (2008).CrossRefGoogle Scholar
Meester, R. B., Goossens, A., Schoonman, J., Mater. Sci. Eng. C 19, 311 (2002).Google Scholar
Xu, Q., Huang, B., Zhao, Y., Yan, Y., Noufi, R., Wei, S.-H., Appl. Phys. Lett. 100, 061906 (2012)CrossRefGoogle Scholar
Lu, Y., Hou, Y., Wang, Y., Feng, Z., Liu, X., , Y., Synth. Met. 161, 906 (2011).CrossRefGoogle Scholar
Wang, Y., Hu, Y., Zhang, Q., Ge, J., Lu, Z., Hou, Y., and Yin, Y., Inorg. Chem. 49, 6601 (2010).CrossRefGoogle Scholar
Isac, L., Duta, A., Kriza, A., Manolache, S., Nanu, M., Thin Solid Films 515, 5755 (2007).CrossRefGoogle Scholar
Nair, M T S, Guerrero, L. and Nair, P K, Semicond. Sci. Technol. 13, 1164 (1998).CrossRefGoogle Scholar
Guchhait, A., Rath, A. K., Pal, A. J., Sol. Energy Mater. Sol. Cells 95, 651 (2011).CrossRefGoogle Scholar
Shanmugam, M., Bansal, T., Durcan, C. A., Yu, B., Appl. Phys. Lett. 100, 153901 (2012)CrossRefGoogle Scholar