Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T02:51:29.971Z Has data issue: false hasContentIssue false

Effect of Chemistry on the Performance of Calcium Disilicide Primers

Published online by Cambridge University Press:  13 February 2012

Paul Anderson
Affiliation:
Explosives Research and Development Branch, ARDEC, Picatinny Arsenal, NJ 07806
Chris Csernica
Affiliation:
Explosives Research and Development Branch, ARDEC, Picatinny Arsenal, NJ 07806
Mark C. Hash
Affiliation:
Ervin Technologies, 200 Industrial Drive, Tecumseh, MI 49286
Joseph Hartvigsen
Affiliation:
Ceramatec, Inc., 2425 South 900 West, Salt Lake City, UT 84119
Raymond A. Cutler
Affiliation:
Ceramatec, Inc., 2425 South 900 West, Salt Lake City, UT 84119
Get access

Abstract

Rotary atomization was used to synthesize spheres of CaSi2-based compositions in order to understand issues relative to primer performance for military applications. Elemental silicon and calcium were used to synthesize the line compound CaSi2 or the eutectic composition between CaSi2 and Si. Fe was added to form FeSi2 as a secondary phase in selected compositions. Rietveld analysis showed that CaSi2 polytypes in the synthesized materials consisted primarily of 6R, with less 3R and some hexagonal material. Synthesized materials had low surface areas (≈0.1 m2/g), but short milling times increased the surface area by an order of magnitude. Peak pressures, pressure rise time, and ignition voltage showed no significant differences between experimentally prepared samples and existing commercial samples. Stoichiometric CaSi2 performed as well as CaSi2-Si or CaSi2-FeSi2-Si mixtures. The military specification for calcium disilicide should be changed to reflect the broad chemistry which can be used for primer performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Moissan, H. and Dilthey, , Berichte der Deutschen Chemischen Gesellschaft, 1902, 35, 1106.Google Scholar
2. Goldschmidt, H., Iron Age, 1908, 82, 232.Google Scholar
3. Calcium Silicide, U. S. Military Standard Mil-C-324 (30 August 1986).Google Scholar
4. Calcium Silicide, British Defence Standard 13-81/Issue 2 (23 March 1990).Google Scholar
5. Manfrinetti, P., Fornasini, M. L., and Palenzona, A., Intermetallics, 2000, 8, 223.Google Scholar
6. Wohler, L. and Muller, F., Z. Allgem. Chem., 1932, 120, 49.Google Scholar
7. Janzon, K. H., Schaefer, H., and Weiss, A., Zeitschrift Anorg. Allgem. Chem., 1970 372(1), 87.Google Scholar
8. Wohler, L. and Schuff, W., , W., Z. Allgem. Chem., 1932, 209, 33.Google Scholar
9. Aravamuthan, V. and Sundaram, M., Chem. Age India, 1969, 20, 316.Google Scholar
10. Kuzmenko, A. G., Yu, F., Kekanov, O., and Kornev, V. N., , V. N., Metallurgist, 2001, 45, 267.Google Scholar
11. Dodero, M., Compt. Rend., 1934, 198, 159.Google Scholar
12. Dodero, M., Bull. Soc. Chim., 1939, 6, 206.Google Scholar
13. Louis, V. and Franck, H. H., Z. Anorg. Allgem. Chem., 1939, 242, 117.Google Scholar
14. Yamaguchi, Y. and Hayakawa, Y., Nippon Kaguku Kaishi, 1941, 62, 785.Google Scholar
15. Cudzilo, S., Huczko, A., and Kicinski, W., Biul. Wojs. Aka. Tech., 2003, 52, 145.Google Scholar
16. Rietveld, H. M., , H. M., J. Appl. Crystallogr., 1969, 2, 65.Google Scholar
17. Bish, D. L. and Howard, S. A., J. Appl. Crystallogr., 1988, 21, 86.Google Scholar
18. NATO Manual of Data Requirements and Tests for the Qualification of Explosive Materials for military use, Ed.2, 2003, US-42.Google Scholar
19. Neyer, B. T., Technometrics.1994, 36, 61.Google Scholar
20. Nakano, H., Yamanaka, S., and Hattori, M., , M., Solid State Ionics, 1992, 635, 53.Google Scholar
21. Dick, S. and Ohlinger, G., Zeitshrift fur Kristallographie-New Crystal Structures, 1998, 213, 232.Google Scholar
22. Evers, J., J. Solid State Chem., 1979, 28, 369.Google Scholar
23. Hirano, T., J. Less Common Met., 1991, 167(2), 329.Google Scholar
24. Subramanian, S., Tiegs, T., Limaye, S., Kapoor, D., and Redner, P., , P., 26th Army Science Conference Proceedings, Report AD-A506071 (DTIC, December 2008).Google Scholar
25. Koch, E-C and Clément, D., Propellents, Explos. Pryrotech., 2007, 32(3), 205.Google Scholar
26. The Making, Shaping, and Treating of Steel, Ed. by McGannon, H. E., Ninth, Ed. (U. S. Steel Corporation, 1971).Google Scholar