Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T14:37:19.200Z Has data issue: false hasContentIssue false

Effect of Ce4+ and Th4+ Ion Substitution in Uranium Dioxide

Published online by Cambridge University Press:  14 February 2012

Rakesh K. Behera
Affiliation:
Nuclear and Radiological Engineering Program, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A.
Chaitanya S. Deo
Affiliation:
Nuclear and Radiological Engineering Program, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A.
Get access

Abstract

Uranium dioxide is the most common fuel used in commercial light water nuclear reactors. The fission of the fuel generates fission products (FPs) and minor actinides (MAs), which affects the thermo-physical properties of the fuel. The understanding of the physical and chemical properties of the FPs and MAs is still limited. In this study we have used atomic level simulations to estimate the effect of Ce4+ and Th4+ ions in urania matrix. Our results show that the structural variation depends on the elastic effect, which is guided by the ionic radius of the substituted ion. Ce4+ (ionic radius 0.97 Å) reduces the overall lattice parameter, while Th4+ (ionic radius 1.05 Å) increases the overall lattice parameter of the urania matrix (U4+ ionic radius 1.00 Å). In addition bulk modulus of the U1-xCexO2 system does not change with substitution while the modulus of U1-xThxO2 reduces with an increase in Th4+ ion concentration. This observation is in accordance with Vegard’s law prediction based on the modulus values of bulk UO2, CeO2 and ThO2 systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kleykamp, H., J. Nucl. Mater. 131, 221246 (1985).Google Scholar
2. Govers, K., Lemehov, S., Hou, M., and Verwerft, M., J. Nucl. Mater. 366, 161177 (2007).Google Scholar
3. Grimes, R. W. and Busker, G., Nucl. Energ.-J. Br. Nucl. 35, 403410 (1996).Google Scholar
4. Nadeem, M., Akhtar, M. J., Shaheen, R., Haque, M. N., and Khan, A. Y., J. Mater. Sci. Technol. 17, 638642 (2001).Google Scholar
5. Arima, T., Yamasaki, S., Inagaki, Y., and Idemitsu, K., J. Alloys Compd. 400, 4350 (2005).Google Scholar
6. Osaka, M., Adachi, J., Kurosaki, K., Uno, M., and Yamanaka, S., J. Nucl. Sci. Technol. 44, 15431549 (2007).Google Scholar
7. Buckingham, R. A., Proc. R. Soc. London, Ser. A 168, 264283 (1938).Google Scholar
8. Morse, P. M., Phys. Rev. 34, 5764 (1929).Google Scholar
9. Dick, B. G. and Overhauser, A. W., Phys. Rev. 112, 90103 (1958).Google Scholar
10. Gale, J. D., J. Chem. Soc., Faraday Trans. 93, 629637 (1997).Google Scholar
11. Gale, J. D. and Rohl, A. L., Mol. Simulat. 29, 291341 (2003).Google Scholar
12. Kim, D. J., Lee, Y. W., and Kim, Y. S., J. Nucl. Mater. 342, 192196 (2005).Google Scholar
13. Shannon, R. D. and Prewitt, C. T., Acta Crystallogr. Sect. B: Struct. Cryst. B 25, 925946 (1969).Google Scholar
14. von Pezold, J., Dick, A., Friak, M., and Neugebauer, J., Phys. Rev. B 81 (2010).Google Scholar
15. Hanken, B. E., Stanek, C. R., Gronbech-Jensen, N., and Asta, M., Phys. Rev. B 84 (2011).Google Scholar
16. McIntosh, S., Vente, J. F., Haije, W. G., Blank, D. H. A., and Bouwmeester, H. J. M., Chem. Mat. 18, 21872193 (2006).Google Scholar
17. Fink, J. K., J. Nucl. Mater. 279, 118 (2000).Google Scholar
18. Cohen, I. and Berman, R. M., J. Nucl. Mater. 18, 77107 (1966).Google Scholar
19. Hubert, S., Purans, J., Heisbourg, G., Moisy, P., and Dacheux, N., Inorg. Chem. 45, 38873894 (2006).Google Scholar
20. Nakajima, A., Yoshihara, A., and Ishigame, M., Phys. Rev. B 50, 1329713307 (1994).Google Scholar
21. Wachtman, J. B., Wheat, M. L., Anderson, H. J., and Bates, J. L., J. Nucl. Mater. 16, 39-& (1965).Google Scholar
22. Macedo, P. M., Capps, W., and Wachtman, J. B., J. Am. Ceram. Soc. 47, 651651 (1964).Google Scholar
23. Idiri, M., Le Bihan, T., Heathman, S., and Rebizant, J., Phys. Rev. B 70, 014113 (2004).Google Scholar
24. Duclos, S. J., Vohra, Y. K., Ruoff, A. L., Jayaraman, A., and Espinosa, G. P., Phys. Rev. B 38, 77557758 (1988).Google Scholar