Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T22:46:58.477Z Has data issue: false hasContentIssue false

Effect of Carbon on the Adhesion of Aluminum Films to Sapphire Substrates

Published online by Cambridge University Press:  10 February 2011

J. A. Schneider
Affiliation:
Sandia National Laboratories, Livermore, CA 94551
S. E. Guthrie
Affiliation:
Sandia National Laboratories, Livermore, CA 94551
M. D. Kriese
Affiliation:
Dept. of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
W. M. Clift
Affiliation:
Sandia National Laboratories, Livermore, CA 94551
N. R. Moody
Affiliation:
Sandia National Laboratories, Livermore, CA 94551
Get access

Abstract

The adhesion of aluminum (Al) films onto sapphire substrates in the presence of controlled contaminants is being investigated. In this study, adhesion strength is evaluated by continuous nanoindentation tests to induce delamination of the Al film from the sapphire substrate. Typically it is difficult to increase the elastic strain energy stored in the film to levels sufficient to promote indentation delaminated blistering in thin ductile films on hard substrates. One method that appears promising is the use of highly stressed overlayers deposited over the Al. An overlayer of sputtered tantalum (Ta) was deposited on 500 rn thick Al films with and without 10 nm of sputtered carbon on the sapphire surface. With Ta overlayers, continuous nanoindentation techniques induced larger diameter delamination blisters in the specimens with carbon, than in the specimens without carbon, indicating a lower resistance to fracture or interfacial strength.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ohring, M., The Materials Science of Thin Films, (Academic Press, Inc., New York, 1992).Google Scholar
2. Bagchi, A., Evans, A.G., Thin Solid Films, 286, 203 (1996)Google Scholar
3. Suo, Z., Hutchinson, J.W., Int. J. of Fracture, 43, 1 (1990).Google Scholar
4. Rice, J.R., J. Appl. Mech., 55, 98 (1988).Google Scholar
5. Evans, A.G., Ruhle, M, Dalgleish, B.J., Charalambides, P.G., Mater. Sci. Engr., A126, 53 (1990).Google Scholar
6. Hutchinson, J.W. Suo, Z., Adv. in Applied Mechanics, (Academic Press, Inc., New York, 1992).Google Scholar
7. Evans, A.G., Drory, M.D., Hu, M.S., J. Mater. Res., 3, 1043 (1988).Google Scholar
8. Chai, H., Int. J. Fracture, 46, 237 (1990).Google Scholar
9. Jensen, H. M., Engr. J. Fract. Mech., 40, 475 (1991).Google Scholar
10. Evans, A.G., Hutchinson, J.W., Int. J. Solids Structures, 20 [5] 455 (1984).Google Scholar
11. Marshall, D.B., Evans, A.G., J. Appl. Phys., 56 [10] 2632 (1984).Google Scholar
12. Turner, M.R., Evans, A.G., Acta Mater, 44, 863 (1996).Google Scholar
13. Bagchi, A., Lucas, G.E., Suo, Z., Evans, A.G., J. Mater. Res., 9, 1734 (1994).Google Scholar
14. Kriese, M. D., Moody, N. R., Gerberich, W. W., MRS Symp. Proc., 473, 39, ed. J.J. Clement, R. R. Keller, K. S. Krisch, J. E. Sanchez Jr., and Z. Suo (1997).Google Scholar
15. Cullity, D. B., Elements of X-Ray Diffraction, (Addison-Wesley, Reading, Massachusetts, 1967).Google Scholar
16. Oliver, W. C., Pharr, G. M., J. Mat. Res., 7, 1564 (1992).Google Scholar
17. Kriese, M. D., Moody, N. R., Gerberich, W. W., to be submitted J. Mat. Res. (1998).Google Scholar
18. Oda, M., Ozawa, A., Ohki, S., Yoshihara, H., Jpn. J. Appl. Phys, 11, 2616 (1990).Google Scholar
19. Saha, R., Barnard, J. A., Cry, J.. Growth, 174, 495 (1997).Google Scholar
20. Thorton, J. A., Hoffman, D. W., Thin Solid Films, 171, 5 (1989).Google Scholar
21. Doerner, M. F., Gardner, D. S., Nix, W. D., J. Mater. Res., 1, 845 (1986).Google Scholar
22. Chopra, K. L., Thin Film Phenomena, (McGraw-Hill Book Co., New York, 1969).Google Scholar
23. Laugier, M.T., Thin Solid Films, 117, 243 (1984).Google Scholar
24. Agrawal, D.C., Raj, R., Mat. Sci. Engr., A126, 125 (1990).Google Scholar
25. Benjamin, P., Weaver, C., Proc. Roy. Soc. London, A252, 418 (1959).Google Scholar
26. Bahr, D. F., Hoehn, J. W., Moody, N. R., Gerberich, W. W., Acta mater., 45 [12], 5163 (1997).Google Scholar
27. Kerans, R. J., Hay, R. S., Pagano, N. J., Cer. Bull., 68 [2], 429 (1989).Google Scholar
28. Brennan, J. J., Tailoring Multiphase and Composite Ceramics, ed. R. T. Tressler, G. L. Messing, C. G. Pantano, R. E. Newnham, 549 (1986).Google Scholar
29. Brennan, J.J., ONR Tech. Report R87-917546-4 (1987).Google Scholar
30. Dehm, G., Raj, R., Ruhle, M., Mat. Sci. Forum, 207–209, 597 (1996).Google Scholar