No CrossRef data available.
Published online by Cambridge University Press: 27 June 2011
The study focuses on the influence of the hydrogenated amorphous silicon carbide (a-SiC:H) buffer layer in hydrogenated amorphous silicon (a-Si:H) single-junction and tandem thin-film solar cells. By increasing the undoped a-SiC:H buffer layer thickness from 6nm to 12nm, the JSC in single-junction cell was significantly improved, and the efficiency was increased by 4.5%. The buffer layer also effectively improves the efficiency of the a-Si:H/a-Si:H tandem cells by 7% as a result of the increase in open-circuit voltage (VOC) and short-circuit current (JSC). Although the bottom cell absorbs less short-wavelength photons, the wider-bandgap doped and buffer layers were still necessary for improving the cell efficiency. Presumably, this is because these wider-bandgap layers allow more photons to reach the bottom cell. Also, they can reduce interface recombination.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.