Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T00:39:12.606Z Has data issue: false hasContentIssue false

Effect of Al substitution on Thermoelectric Performance of CuInTe2 compounds

Published online by Cambridge University Press:  27 March 2015

Chuandeng Hu
Affiliation:
College of Physics, Chongqing University, Chongqing 401331, P. R. China.
Kunling Peng
Affiliation:
College of Physics, Chongqing University, Chongqing 401331, P. R. China. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
Guiwen Wang
Affiliation:
College of Physics, Chongqing University, Chongqing 401331, P. R. China. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
Lijie Guo
Affiliation:
College of Physics, Chongqing University, Chongqing 401331, P. R. China.
Guoyu Wang*
Affiliation:
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
Xiaoyuan Zhou*
Affiliation:
College of Physics, Chongqing University, Chongqing 401331, P. R. China.
*
*Corresponding author: Tel: +86-23-6593-5603; Fax: +86-23-6567-8362 Email: xiaoyuan2013@cqu.edu.cn; guoyuw@cigit.ac.cn
*Corresponding author: Tel: +86-23-6593-5603; Fax: +86-23-6567-8362 Email: xiaoyuan2013@cqu.edu.cn; guoyuw@cigit.ac.cn
Get access

Abstract

Thermoelectric CuIn1-xAlxTe2 compounds (x=0, 0.05, 0.1, 0.15, 0.50) have been synthesized by solid state reaction followed by spark plasma sintering. The influence of Al substitution on electrical and thermal transport properties has been investigated in the CuInTe2 compounds. It was found that the Seebeck coefficient and electrical conductivity is reduced by isovalent replacement of In with Al. Our first principle calculation indicates Al substitution leads to the widen band gap, the reduction in the number of degeneracy of valence band and the effective mass. Furthermore, a large reduction in thermal conductivity is achieved through the enhanced phonon scattering via point defect as well as the nano-sized particles observed between grain boundaries and on the grain surface. In spite of the reduced charge transport properties, an improved figure-of- merit ZT is achieved, reaching 0.8 at 800 K, 33% higher in comparison to the pure CuInTe2 compound.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bell, L. E., Science, 321, 1457 (2008).CrossRefGoogle Scholar
Zhao, L. D., Dravid, V. P. and Kanatzidis, M. G., Energy Environ. Sci., 7, 251 (2014).CrossRefGoogle Scholar
Shi, X., Yang, J., Salvador, J. R., Chi, M. F., Cho, J. Y., Wang, H., Bai, S. Q., Yang, J. H., Zhang, W. Q., and Chen, L. D., J. Am. Chem. Soc., 133, 7837 (2011).CrossRefGoogle Scholar
Chi, H., Kim, H., Thomas, J. C., Shi, G., Sun, K., Abeykoon, M., Bozin, E. S., Shi, X. Y., Li, Q., Shi, X., Kioupakis, E., Ven, A. V., Kaviany, M., and Uher, C., Phys. Rev. B 89, 239904 (2014).CrossRefGoogle Scholar
Liu, R. H., Xi, L. L., Liu, H. L., Shi, X., Zhang, W.Q. and Chen, L. D., Chem. Commun., 48, 3818 (2012).CrossRefGoogle Scholar
Plirdpring, T., Kurosaki, K., Kosuga, A., Day, T., Firdosy, S., Ravi, V., Snyder, G. J., Harnwunggmoung, A., Sugahara, T., Ohishi, Y., Muta, H., and Yamanaka, S., Adv. Mater., 24, 3622 (2012).CrossRefGoogle Scholar
Kosuga, A., Higashine, R., Plirdpring, T., Matsuzawa, M., Kurosaki, K., and Yamanaka, S., Jpn. J. Appl. Phys., 51, 121803 (2012).CrossRefGoogle Scholar
Tsujii, N. and Mori, T., Appl. Phys. Express, 6, 043001 (2013).CrossRefGoogle Scholar
Chen, H. J., Yang, C. Y., Liu, H. L., Zhang, G. H., Wan, D. Y., Huang, F. Q.. Cryst. Eng. Comm., 15, 6648 (2013).CrossRefGoogle Scholar
Cui, J. L., Li, Y. P., Du, Z. L., Meng, Q. S., Zhou, H.. J. Mater. Chem. A., 1, 677 (2013).CrossRefGoogle Scholar
Wu, W. C., Li, Y. P., Du, Z. L., Meng, Q. S., Sun, Z., Ren, W., Cui, J. L.. Appl. Phys. Lett., 103, 011905 (2013).CrossRefGoogle Scholar
Cheng, N., Liu, R., Bai, S., Shi, X., Chen, L.. J. Appl. Phys., 115, 163705 (2014).CrossRefGoogle Scholar
Yang, J. F., Chen, S. P., Du, Z. L., Liu, X. L., Cui, J. L.. Dalton Trans., 43, 15228 (2014).CrossRefGoogle Scholar
Zhang, J., Liu, R. H., Cheng, N., Zhang, Y. B., Yang, J. H., Uher, Ctirad., Shi, X., Chen, L. D., Zhang, W. Q.. Adv. Mater., 26, 3848 (2014).CrossRefGoogle Scholar
Wasim, S. M., Rinco ´n, C., Delgado, J.M., Marı ´n, G., J. Phys. Chem. Solid., 66, 1990 (2005).CrossRefGoogle Scholar
Mobarak, M., Shaban, H.T., Mater. Chem. Phys., 147, 439 (2014).CrossRefGoogle Scholar
Liu, M. L., Huang, F. Q., Chen, L. D. and Chen, I. W., Appl. Phys. Lett., 94, 202103 (2009).CrossRefGoogle Scholar
Liu, M. L., Chen, I. W., Huang, F. Q., and Chen, L. D., Adv. Mater., 21, 3808 (2009).CrossRefGoogle Scholar
Shi, X. Y., Xi, L. L., Fan, J., Zhang, W. Q., and Chen, L. D., Chem. Mater., 22, 6029 (2010).CrossRefGoogle Scholar
Kohn, W. and Sham, L. J., Phys. Rev., A 140, 1133 (1965).CrossRefGoogle Scholar
Kresse, G., Furthmüller, J., Phys. Rev., B 54, 11169 (1996) .CrossRefGoogle Scholar
Kresse, G., Furthmüller, J., Comput. Mater. Sci., 6, 15 (1996).CrossRefGoogle Scholar
Xie, W. J., He, J. A., Kang, H. J., Tang, X. F., Zhu, S., Laver, M., Wang, S. Y., Copley, J. R. D., Brown, C. M., Zhang, Q. J., and Tritt, T. M., Nano Lett., 10, 3283 (2010).CrossRefGoogle Scholar
Minnich, A. J., Dresselhaus, M. S., Ren, Z. F., and Chen, G., Energy & Environ. Sci., 2, 466 (2009).CrossRefGoogle Scholar
Prabukanthan, P. and Dhanasekaran, R., Mater. Res. Bull., 43, 1996 (2008).CrossRefGoogle Scholar
Zou, D. F., Xie, S. H., Liu, Y. Y., Lin, J. G., Li, J. Y.. J. Alloys Compd., 570, 150 (2013).CrossRefGoogle Scholar
Pei, Y. Z., Wang, H., Gibbs, Z. M., LaLonde, A. D., and Jeffrey Snyder, G, NPG Asia Materials, 4, e28 (2012).CrossRefGoogle Scholar
Dahal, T., Jie, Q., Lan, Y. C., Guo, C. F. and Ren, Z. F., Phys. Chem. Chem. Phys., 16, 18170 (2014).CrossRefGoogle Scholar