Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:54:14.615Z Has data issue: false hasContentIssue false

Ebic Study of Fe Precipitation on Bulk Stacking Fault in Czochralski-Grown Silicon

Published online by Cambridge University Press:  15 February 2011

B. Shen
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R. China
T. Sekiguchi
Affiliation:
Institute For Materials Research, Tohoku University, Sendai 980, Japan
P. Chen
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R. China
K. Yang
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R. China
Z. Z. Chen
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R. China
Y. D. Zheng
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R. China
K. Sumino
Affiliation:
Institute For Materials Research, Tohoku University, Sendai 980, Japan
Get access

Abstract

Fe precipitation on bulk stacking faults in Czochralski-grown silicon are investigated by means of the electron-beam-induced-current (EBIC) technique and other techniques. It is found that Fe impurities only precipitate on Frank partial dislocations bounding stacking faults when the specimen is cooled slowly; however, they precipitate on both Frank partials and fault planes when the specimen is cooled fast. It is explained that small oxygen precipitates on fault planes, together with Frank partials, serve as the gettering centers for Fe impurities in the fast cooled specimen.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hu, S.M., J. Vac. Sci & Technol., 14, 17 (1991)Google Scholar
2. Weber, E.R., Appl. Phys., A30, 1 (1983)Google Scholar
3. Fell, T.S., Wilshaw, P.R., and Coteau, M.D.de., Phys. Status Solidi, A138, 695 (1993)Google Scholar
4. Gilles, D., Weber, E.R., and Hahn, S., Phys. Rev. Lett., 64, 196 (1990)Google Scholar
5. Falster, R.J., Fisher, G.R., and Ferroro, G., Appl. Phys. Lett., 59, 809 (1991)Google Scholar
6. Tan, T.Y., and Tice, W.K., Philos. Mag., 30, 615, (1976)Google Scholar
7. Graff, K., Hefner, H.A., and Henrerici, W., J. Electrochem. Soc., 135, 952 (1988)Google Scholar
8. Shimura, F., Tsuya, H., and Kanamurai, T., J. Electrochem. Soc., 128, 1579 (1981)Google Scholar
9. Shen, B., Sekiguchi, T., Jablonski, J., and Sumino, K., J. Appl. Phys., 76, 4540 (1994)Google Scholar
10. Higgs, V., Goulding, M., Brinklew, A., and Kinghtley, P., Appl. Phys. Lett., 60, 1369 (1992)Google Scholar
11. Gilles, D., Solid State Phenom., 32 & 33, 57 (1993)Google Scholar
12. Castaldini, A., Cavallini, A., Poggi, A., and Susi, E., Appl. Phys., A48, 431 (1989)Google Scholar
13. Milkelsen, J.C., Mat. Res. Symp. Proc., 36, 45 (1985)Google Scholar
14. Seibt, M., and Schroter, W., Solid State Phenom., 19 & 20, 283 (1991)Google Scholar