Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T04:17:40.334Z Has data issue: false hasContentIssue false

Dynamic Simulation of the Migration of Oxygen Vacancy Defects in Rutile TiO2

Published online by Cambridge University Press:  23 May 2012

Jan M. Knaup*
Affiliation:
Bremen Center for Computational Materials Science, Universität Bremen, Am Fallturm 1, 28359 Bremen, Germany
Michael Wehlau
Affiliation:
Bremen Center for Computational Materials Science, Universität Bremen, Am Fallturm 1, 28359 Bremen, Germany
Thomas Frauenheim
Affiliation:
Bremen Center for Computational Materials Science, Universität Bremen, Am Fallturm 1, 28359 Bremen, Germany
Get access

Abstract

We simulate the thermodynamics and kinetics of the drift/diffusion of oxygen vacancy defects in rutile TiO2, using the density-functional based tight-binding (DFTB) method. Both static and dynamic simulations have been performed. Results indicate that DFTB is well suited to examine the dynamic behavior of oxygen vacancies in TiO2. Detailed analysis shows, that strong model size dependence in relative diffusion barrier heights between different diffusion processes requires great care in defect diffusion simulations in TiO2. Thermodynamic results on the influence of an external electric field show that, due to the large dielectric constant, the coulomb driving force on oxygen vacancy diffusion is very small. Dynamic simulation of the influence of electric fields on the diffusion requires the use of advanced molecular dynamics acceleration schemes.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kwon, D.-H., Kim, K. M., Jang, J. H., Jeon, J. M., Lee, M. H., Kim, G. H., Li, X.-S., Park, G.-S., Lee, B., Han, S., Kim, M., Hwang, C. S., nature nanotechnology, 5, 148 (2010)Google Scholar
2. Andersson, Sten, Act. Chem. Scand., 14, 1161 (1960)Google Scholar
3. Strachan, J. P., Pickett, M. D., Yang, J. J., Aloni, S., David Kilcoyne, A. L., Medeiros-Ribeiro, G., and Williams, R. S.., Adv. Mater., 22, 3573 (2010); J. P. Strachan, J J. Yang, R. Münstermann, A. Scholl, G. Medeiros-Ribeiro, D. R Stewart, R S. Williams, Nanotechnology, 20, 485701(2009); D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, Nature, 453, 80 (2008) Google Scholar
4. Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, T., Suhai, S., Seifert, G., Phys. Rev. B 58, 7260, (1998); B. Aradi, B. Hourahine, Th. Frauenheim, J. Phys. Chem. A 111, 5678(2007) Google Scholar
5. Dolgonos, Grygoriy, Aradi, Bálint, Moreira, Ney H. and Frauenheim, Thomas, J. Chem. Theory Comput., 6, 266 (2010)Google Scholar
6. Page, A. J., Isomoto, T., Ohta, Y., Knaup, J. M., Irle, S., Morokuma, K., (2012) to be published.Google Scholar
7. Laio, A. and Parrinello, M., Proc. Natl. Acad. Sci. USA. 99, 12562 (2002)Google Scholar
8. Bonomi, M., Branduardi, D., Bussi, G., Camilloni, C., Provasi, D., Raiteri, P., Donadio, D., Marinelli, F., Pietrucci, F., Broglia, R. A. and Parrinello, M., Comp. Phys. Comm. 180, 1961 (2009)Google Scholar
9. Iddir, H., Öğüt, S., Zapol, P., and Browning, N. D., Phys. Rev. B, 75, 073203 (2007)Google Scholar
11. Humphrey, W., Dalke, A. and Schulten, K., J. Molec. Graphic, 14, 33, (1996)Google Scholar