No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
The surface modification of nanoporous tin dioxide materials was achieved with trialkynylorganotin(IV) (C4H9-C=C)3Sn-(CH2)n(C10H20) (n = 4,6)1 endowed with a perylene dye to yield powders containing up to 0.13 mmol.g-1 of perylene unit or dye-modified thin films. Irreversible chemisorption occurred in solution at room temperature to give perylene dye grafted at the oxide surface via the cleavage of the three tin-alkynide bonds of the precursor and the formation of Snbulk-O-Sn-Cdye linkages. The photoelectrochemical cells made with the 1-modified films demonstrated maximum incident photon to current efficiency (IPCE) as high as 18% at 430 nm under white light illumination. The performances of the cells were interpreted in terms of the intrinsic properties of tin dioxide and aggregation of the perylene dye.