Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T05:10:11.389Z Has data issue: false hasContentIssue false

Driving Electrons to Anti-Bonding States: On the Synthesis of New Niobium Cluster Chlorides by Electrochemical Lithium Intercalation

Published online by Cambridge University Press:  01 February 2011

Flaviano Garcia-Alvarado
Affiliation:
flaga@ceu.es, Universidad San Pablo CEU, Chemistry, Boadilla del Monte, Spain
Alois Kuhn
Affiliation:
akuhn@ceu.es, Universidad San Pablo CEU, Chemistry, Boadilla del Monte, Spain
Elena Gonzalo
Affiliation:
egonzalo@ceu.es, Universidad San Pablo CEU, Chemistry, Boadilla del Monte, Spain
H. Juergen Meyer
Affiliation:
juergen.meyer@uni-tuebingen.de, Universität Tübingen, Institut für Anorganische Chemie, Tübingen, Germany
Get access

Abstract

The lithium intercalation chemistry of LiNb6Cl15, a 16 e Nb-cluster, has been explored in order to obtain new Nb-cluster compounds. As a result, three different phases have been detected. Full de-intercalation of lithium produces Nb6Cl15, a new 15 e Nb-cluster. The oxidation reaction is reversible since lithium can be intercalated again to produce the parent LiNb6Cl15. On the other hand, intercalation of lithium into LiNb6Cl15 seems to proceed through two single phases with the following stoichiometries: Li1.5Nb6Cl15 and Li3Nb6Cl15. For these two compositions the extra electrons (0.5 and 2 respectively/formula) should enter the eg* molecular orbitals arising from Nb-Nb interactions inside the cluster. The reductions of LiNb6Cl15 leading to these two new electron-rich Nb-cluster are reversible as detected by chronopotentiometry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schollhorn, R., Kumpers, M., and Besenhard, J. O., Materials Research Bulletin 12 (8), 781 (1977);Google Scholar
Tarascon, J. M., Disalvo, F. J., Murphy, D. W. et al., Journal of Solid State Chemistry 54 (2), 204 (1984).Google Scholar
2. Aurbach, D., Lu, Z., Schechter, A. et al., Nature 407 (6805), 724 (2000);Google Scholar
Levi, E., Lancry, E., Mitelman, A. et al., Chemistry of Materials 18 (16), 3705 (2006).Google Scholar
3. delaCruz, A. M., TorresMartinez, L. M., GarciaAlvarado, F. et al., Solid State Ionics 84 (3–4), 181 (1996).Google Scholar
4. Dill, S., Kuhn, A., Meyer, H-J, Z. Anorg. Allg. Chem 631, 1565 (2005).Google Scholar
5. Bajan, B., Balzer, G., and Meyer, H. J., Zeitschrift Fur Anorganische Und Allgemeine Chemie 623 (11), 1723 (1997).Google Scholar
6. Bauer, D. and Vonschne, Hg, Zeitschrift Fur Anorganische Und Allgemeine Chemie 361 (5–6), 259 (1968).Google Scholar
7. Kuhn, A., Dill, S., and Meyer, H-J., Zeitschrift Fur Anorganische Und Allgemeine Chemie 631, 1565 (2005).Google Scholar