Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T14:02:20.998Z Has data issue: false hasContentIssue false

Doping and Mobility Profiles in Defect-Engineered Ultra-shallow Junctions: Bulk and SOI

Published online by Cambridge University Press:  17 March 2011

A. J. Smith
Affiliation:
Advanced Technology Institute, Surrey University, Guildford, GU2 7XH, U.K.
B. Colombeau
Affiliation:
Advanced Technology Institute, Surrey University, Guildford, GU2 7XH, U.K.
R. Gwilliam
Affiliation:
Advanced Technology Institute, Surrey University, Guildford, GU2 7XH, U.K.
E. Collart
Affiliation:
Applied Materials UK Ltd, Parametric and Conductive Implant Division, Horsham, RH13 5PX, UK
N.E.B. Cowern
Affiliation:
Advanced Technology Institute, Surrey University, Guildford, GU2 7XH, U.K.
B. J. Sealy
Affiliation:
Advanced Technology Institute, Surrey University, Guildford, GU2 7XH, U.K.
Get access

Abstract

Silicon on insulator (SOI - Smartcut®) wafers were implanted with 1MeV and 300keV silicon ions to doses of 3.8x1015 cm−2 and 3x1014 cm−2, respectively, in order to modify the vacancy concentration in a controlled way. Boron was then implanted at 2keV to a dose of 1×1015 cm−2 into the near-surface part of the vacancy-engineered region. Atomic profiles were determined using SIMS and electrical profiles were measured using a novel Differential Hall Effect (DHE) technique, which enables profiling of electrically active dopants with a nanometer depth resolution. The electrical profiles provide pairs of carrier concentration and mobility values as a function of depth. The buried oxide (BOX) is proven to restrict the back diffusing interstitials positioned below the BOX from entering the silicon top layer and interacting with the boron profile. Also an increase of ∼50% in boron activation is achieved when a co-implant is used. However, SOI shows a reduced degree of activation when compared to bulk silicon, with or without a co-implant.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Winterbon, K., Rad. Eff. 46, 181 (1980)Google Scholar
2. Venezia, V., Haynes, T., Agarwal, A., Pelaz, L.. Gossmann, H.-J., Jacobson, D., Eaglesham, D., Appl. Phys. Lett. 74, 1299 (1999)Google Scholar
3. Shao, L., Thompson, P., Bleiler, R., Baumann, S., Wang, X., Chen, H., Liu, J., Chu, W., J. Appl. Phys. 92, 5793 (2002)Google Scholar
4. Kalyanaraman, R., Venezia, V., Pelaz, L., Haynes, T., Gossmann, H.-J., Rafferty, C., Appl. Phys. Lett. 82, 215 (2003)Google Scholar
5. Nejim, A., Sealy, B., Semicond. Sci. Technol. 18, 839 (2003)Google Scholar
6. Shao, L., Wang, X., Liu, J., Bennett, J., Larsen, L., Chu, W., J. Appl. Phys. 92, 4307 (2002)Google Scholar
7. Shao, L., Liu, J., Chen, Q., Chu, W., Mat. Sci. Eng. R42 65 (2003)Google Scholar
8. Colombeau, B., Smith, A.J., Cowern, N., Pawlak, B., Cristiano, F., Duffy, R., Claverie, A., Ortiz, C., Pichler, P., Lampin, E., Zechner, C., Mat. Res. Symp. Proc. 810, C3.6.1 (2004)Google Scholar
9. Alzanki, T., Gwilliam, R., Emerson, N., Tabatabaian, Z., Jeynes, C., Sealy, B., in press, Semicond. Sci. Technol. (2004)Google Scholar
10. Sasaki, Y., Itoh, K., Inoue, E., Kishi, D., Mitsuishi, T., Sol. Stat. Elec. 31, 5 (1988)Google Scholar
11. Holland, O., White, C., Nucl. Inst. Meth. Phys. Res. B59/60, 353 (1991)Google Scholar
12. Uchida, H., Ichimura, M., Arai, E., Jpn. J. Appl. Phys. 41, 4436 (2002)Google Scholar
13. Cowern, N., Cacciato, A., Custer, J., Saris, F., Vandervorst, W., Appl. Phys. Lett. 68, 1150 (1996)Google Scholar
14. ASTM F723-88Google Scholar
15. Thurber, W., Mattis, R., Liu, Y., Filliben, J., J. Electrochem.Soc. 127, 1807 (1980)Google Scholar