Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T13:44:06.942Z Has data issue: false hasContentIssue false

Dopant - Extended Defects Interactions: The Case of Aluminum

Published online by Cambridge University Press:  17 March 2011

Ch. Ortiz
Affiliation:
L.M.P., 16 rue Pierre et Marie Curie, 37071 Tours Cedex 2 (France) Laboratoire PHASE-CNRS, 23 rue du Loess, 67037 Strasbourg Cedex 2 (France)
D. Mathiot
Affiliation:
Laboratoire PHASE-CNRS, 23 rue du Loess, 67037 Strasbourg Cedex 2 (France)
Ch. Dubois
Affiliation:
L.P.M./Insa Lyon, 20 rue Albert. Einstein, 69621 Villeurbanne Cedex (France)
D. Alquier
Affiliation:
L.M.P., 16 rue Pierre et Marie Curie, 37071 Tours Cedex 2 (France)
R. Jérisian
Affiliation:
L.M.P., 16 rue Pierre et Marie Curie, 37071 Tours Cedex 2 (France)
Get access

Abstract

We studied the Al redistribution in the vicinity of a well-defined EOR band formed by Ge pre-amorphization. Aluminum was implanted in Si at 3 MeV to a low dose before the preamorphization step in order to localize the as-implanted Al peak away from the EOR band. Rapid thermal annealings were performed in the temperature range [900-1000°C] for times varying from 20 s up to 200 s. The results of this study evidence a clear accumulation of the dopant on the extended defects, indicating a direct trapping mechanism of the dopant by the EOR.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Galvagno, G., Via, F. La, Priolo, F. and Rimini, E., Semicond. Sci. Technol. 8 (1993) 488494 10.1088/0268-1242/8/4/002Google Scholar
[2] Galvagno, G., Scandurra, A., Raineri, V., Spinella, C., Torrisi, A., Ferla, A. La, Sciascia, V. and Rimini, E., J. Electrochem. Soc., 140, 2313 (1993)10.1149/1.2220815Google Scholar
[3] Ferla, A. La, Torrisi, L., Galvagno, G. and Rimini, E., Appl. Phys. Lett. 62(4), 393 (1993)10.1063/1.108967Google Scholar
[4] Ortiz, Ch., Grob, J.J., Mathiot, D., Claverie, A., Dubois, Ch. and Jérisian, R., NIM B 147 (1999) 122126 10.1016/S0168-583X(98)00575-8Google Scholar
[5] Bonafos, C., Claverie, A., Alquier, D., Bergaud, C., Martinez, A., Laânab, L., and Mathiot, D. Appl. Phys. Lett. 71 (3), 365 (1997)10.1063/1.119563Google Scholar
[6] Mannino, G., Cowern, N.E.B., Roozeboom, F., and Berkaum, J.G.M. van, Appl. Phys. Lett. 76, 855 (2000)10.1063/1.125607Google Scholar
[7] Stolk, P.A., Eagleham, D.J., Gossman, H.J., and Poate, J.M., Appl. Phys. Lett. 66, 1370 (1995)10.1063/1.113204Google Scholar
[8] Bonafos, C., Mathiot, D., and Claverie, A., J. Appl. Phys. 83, 3008 (1998)10.1063/1.367056Google Scholar
[9] Bergaud, C., Mathiot, D., Lâanab, L., Claverie, A. and Martinez, A., Proceedings of IIT 94 Catania (1994) 756 Google Scholar
[10] Pichler, P., Jungling, W., Selberherr, S., Guerrero, E. and Pötzl, H.W., IEEE Trans. Computer-Aided Design 4, 384 (1985)10.1109/TCAD.1985.1270136Google Scholar
[11] Alquier, D., Thesis, Toulouse (1998)Google Scholar
[12] Ortiz, Ch., Mathiot, D., Dubois, Ch., and Jérisian, R. J. Appl. Phys. 87 (5), 2661 (2000)10.1063/1.372236Google Scholar