Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T11:44:36.673Z Has data issue: false hasContentIssue false

DNA Gating effect from single layer graphene

Published online by Cambridge University Press:  30 August 2011

Jian Lin
Affiliation:
Department of Mechanical engineering, University of California at Riverside, Riverside, CA 92521, U.S.A. Department of Electrical engineering, University of California at Riverside, Riverside, CA 92521, U.S.A.
Desalegne Teweldebrhan
Affiliation:
Department of Electrical engineering, University of California at Riverside, Riverside, CA 92521, U.S.A.
Khalid Ashraf
Affiliation:
Department of Electrical engineering, University of California at Riverside, Riverside, CA 92521, U.S.A.
Guanxiong Liu
Affiliation:
Department of Electrical engineering, University of California at Riverside, Riverside, CA 92521, U.S.A.
Xiaoye Jing
Affiliation:
Department of Electrical engineering, University of California at Riverside, Riverside, CA 92521, U.S.A.
Zhong Yan
Affiliation:
Department of Electrical engineering, University of California at Riverside, Riverside, CA 92521, U.S.A.
Mihrimah Ozkan
Affiliation:
Department of Electrical engineering, University of California at Riverside, Riverside, CA 92521, U.S.A.
Roger K. Lake
Affiliation:
Department of Electrical engineering, University of California at Riverside, Riverside, CA 92521, U.S.A.
Alexander A. Balandin
Affiliation:
Department of Electrical engineering, University of California at Riverside, Riverside, CA 92521, U.S.A. Department of Material science and engineering, University of California at Riverside, Riverside, CA 92521, U.S.A.
Cengiz S. Ozkan
Affiliation:
Department of Mechanical engineering, University of California at Riverside, Riverside, CA 92521, U.S.A. Department of Material science and engineering, University of California at Riverside, Riverside, CA 92521, U.S.A.
Get access

Abstract

In this letter, single stranded Deoxyribonucleic Acids (ssDNA) are found to act as negative potential gating agents that increase the hole density in single layer graphene (SLG). Current-voltage measurement of the hybrid ssDNA/graphene system indicates a shift in the Dirac point and “intrinsic” conductance after ssDNA is patterned. The effect of ssDNA is to increase the hole density in the graphene layer, which is calculated to be on the order of 1.8×1012 cm-2. This increased density is consistent with the Raman frequency shifts in the G-peak and 2D band positions and the corresponding changes in the G-peak full-width half maximum. This patterning of DNA on graphene layers could provide new avenues to modulate their electrical properties and for novel electronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306, 666 (2004).Google Scholar
2. Johnson, R. R., Johnson, A. T. C., and Klein, M. L., Nano Lett. 8, 69 (2008).Google Scholar
3. Zheng, M., Jagota, A., Strano, M. S., Santos, A. P., Barone, P., Chou, S. G., Diner, B. A., Dresselhaus, M. S., McLean, R. S., Onoa, G. B., Samsonidze, G. G., Semke, E. D., Usrey, M., and Walls, D. J., Science 302, 1545 (2003).Google Scholar
4. Wang, X., Liu, F., Andavan, G. T. S., Jing, X. Y., Singh, K., Yazdanpanah, V. R., Bruque, N., Pandey, R. R., Lake, R., Ozkan, M., Wang, K. L., and Ozkan, C. S., Small 2, 1356 (2006).Google Scholar
5. Mohanty, N. and Berry, V., Nano Lett. 8, 4469 (2008).Google Scholar
6. Pisana, S., Lazzeri, M., Casiraghi, C., Novoselov, K. S., Geim, A. K., Ferrari, A. C., and Mauri, F., Nat. Mater. 6, 198 (2007).Google Scholar
7. Das, A., Pisana, S., Chakraborty, B., Piscanec, S., Saha, S. K., Waghmare, U. V., Novoselov, K. S., Krishnamurthy, H. R., Geim, A. K., Ferrari, A. C., and Sood, A. K., Nat. Nanotechnol. 3, 210 (2008).Google Scholar
8. Yan, J., Zhang, Y. B., Kim, P., and Pinczuk, A., Phys. Rev. Lett. 982007).Google Scholar
9. Adam, S., Hwang, E. H., Galitski, V. M., and Das Sarma, S., Proc. Natl. Acad. Sci. U. S. A. 104, 18392 (2007).Google Scholar
10. Tan, Y. W., Zhang, Y., Bolotin, K., Zhao, Y., Adam, S., Hwang, E. H., Das Sarma, S., Stormer, H. L., and Kim, P., Phys. Rev. Lett. 992007).Google Scholar
11. Artyukhin, A. B., Stadermann, M., Friddle, R. W., Stroeve, P., Bakajin, O., and Noy, A., Nano Lett. 6, 2080 (2006).Google Scholar
12. Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., and Geim, A. K., Phys. Rev. Lett. 972006).Google Scholar
13. Ishigami, M., Chen, J. H., Cullen, W. G., Fuhrer, M. S., and Williams, E. D., Nano Lett. 7, 1643 (2007).Google Scholar
14. Casiraghi, C., Pisana, S., Novoselov, K. S., Geim, A. K., and Ferrari, A. C., Appl. Phys. Lett. 91, 233108 (2007).Google Scholar
15. Stampfer, C., Molitor, F., Graf, D., Ensslin, K., Jungen, A., Hierold, C., and Wirtz, L., Appl. Phys. Lett. 91, 241907 (2007).Google Scholar