Published online by Cambridge University Press: 15 February 2011
Aluminum clad fuel and target elements represent approximately 10% of the DOE owned spent nuclear fuels. The uranium in a large fraction of these fuels is highly enriched and is present as uraniumaluminides which are distributed relatively uniformly within an Al-U alloy core. Emerging acceptance criteria are expected to limit the dry storage temperature for aluminum based fuels to approximately 200°C. The rock temperature near the center of a repository may exceed 200°C if the thermal loading approaches 110 kW/acre. This combination may force the placement of canisters containing aluminum based fuels near the repository periphery. The warm, moist environment anticipated at the periphery may provide aggressive conditions for corrosion of the canister and the highly enriched, aluminum based fuels. Peripheral locations may also be the most vulnerable to covert fuel removal operations. Possible consequences of mixing aluminum based fuels with other fuels in a repository are discussed in this paper.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.