Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T22:17:45.530Z Has data issue: false hasContentIssue false

Dislocations in Submicron Grain Size and Nanocrystalline Copper

Published online by Cambridge University Press:  14 March 2011

T. Ungár
Affiliation:
Dept. of General Phys., Eötvös University Budapest, H-1518, P.O.B. 32, Budapest, Hungary
G. Tichy
Affiliation:
Dept. of Solid State Phys., Eötvös University Budapest, H-1518, P.O.B. 32, Budapest, Hungary
P. G. Sanders
Affiliation:
Harvard University, 402 Gordon McKay, 9 Oxford St, Cambridge, MA, 02138, U.S.A.
J. R. Weertman
Affiliation:
Dept. of Mater. Sci. and Eng., Northwestern University Evanston, IL, 60208, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using the dislocation model of strain anisotropy in X-ray diffraction peak profile analysis it is shown that in nanocrystalline copper produced by inert gas condensation dislocations are present, at least, down to average grain sizes of the order of 20 nm. Based on the analysis of the dislocation contrast factors it is suggested that with decreasing grain size the proportion of Lomer-Cottrell type dislocations increases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

References

REFERENCES

1. Chokshi, A. H., Gleiter, H. and Rosen, A. R., Scripta Metall. 23, 1679 (1989).Google Scholar
2. Swygenhofen, H. Van and Caro, A., Nanostr. Mater. 9, 669 (1997).Google Scholar
3. Weertman, J. R., Farkas, D., Hemker, K., Kung, H., Mayo, M., Mitra, R. and Swygenhofgen, H. Van, MRS Bull. 24, 44 (1999).Google Scholar
4. Braisaz, T., Ruterana, P., Nouet, G., Komninou, Ph., Kehagias, Th., Karakostas, Th., Poulopoulos, P., Aggelakeris, M., Flevaris, N. and Serra, A., This Solid Films, 319, 140 (1998).Google Scholar
5. Ungár, T., Ott, S., Sanders, P. G., Borbély, A. and Weertman, J. R., Acta mater. 46, 3693 (1998).Google Scholar
6. Ungár, T. and Tichy, G., phys. stat. sol. (a), 147, 425 (1999).Google Scholar
7. Ungár, T., Dragomir, I., Révész, Á. and Borbély, A., J. Appl. Cryst. 32, 992 (1999).Google Scholar
8. Ungár, T., Gubicza, J. and Ribárik, G., J. Appl. Cryst. submitted for publication.Google Scholar
9. Warren, B. E., Progr. Metal Phys. 8, 147 (1959).Google Scholar
10. Krivoglaz, M. A., in Theory of X-ray and Thermal Neutron Scattering by Real Crystals, Plenum Press, N. Y. 1969; and in X-ray and Neutron Diffraction in Nonideal Crystals, Springer-Verlag, Berlin Heidelberg New York, 1996.Google Scholar
11. Wilkens, M., phys. stat. sol. (a) 2, 359 (1970).Google Scholar
12. Wilkens, M., phys. stat. sol. (a), 1987, 104, K1.Google Scholar
13. Kuzel, R. Jr. and Klimanek, P., J. Appl. Cryst. 1989, 22, 299.Google Scholar
14. Groma, I., Phys. Rev. B, 57, 7535 (1998).Google Scholar
15. Hinds, W. C., Aerosol Technology: Properties, Behavior and Measurement of Airbone Particles, Wiley, New York. (1982).Google Scholar
16. Langford, J. I., Louer, D. and Scardi, P., J. Appl. Cryst. 33, 964 (2000).Google Scholar
17. Sanders, P. G., Fougere, G. E., Thompson, L. J., Eastman, J. A., and Weertman, J. R., Nanostruct. Mater., 8, 243 (1997).Google Scholar
18. Valiev, R. Z., Kozlov, E. V., Ivanov, Yu. F., Lian, J., Nazarov, A. A. and Baudelet, B., Acta metall. mater. 42, 2467 (1994).Google Scholar
19. Williamson, G. K. and Hall, W. H., Acta metall. 1, 22 (1953).Google Scholar
20. Mitra, R., Ungár, T., Morita, T., Sanders, P. G. and Weertman, J. R., in Advanced Materials for the 21st Century, Eds. Chung, Y. W., Durand, D. C., Liaw, P. K., Olson, G. B., TMS, Warrendale, PA, 1999, p. 553.Google Scholar
21. Hearmon, R. F. S., in Landolt-Börnstein, 1, pp. 139 (1966).Google Scholar