Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T23:36:10.275Z Has data issue: false hasContentIssue false

Dislocations in a Partially-Filled Skutterudite

Published online by Cambridge University Press:  21 March 2011

Jennifer S. Harper
Affiliation:
Department of Materials Science and EngineeringUniversity of CaliforniaBerkeley, California 94720-1760
Ronald Gronsky
Affiliation:
Department of Materials Science and EngineeringUniversity of CaliforniaBerkeley, California 94720-1760
Get access

Abstract

The partially filled skutterudite structure is a candidate thermoelectric material with the capacity for phonon scattering by the decoupled rattling of filling ions. In this transmission electron microscopy investigation of a 1.6%Ce, 1.6%Ni, 4.9%Ge, 22.8%Co, and 69.1%Sb alloy, the structure is confirmed to be of a partially-filled skutterudite, but with a number of defects. Isolated dislocation dipoles, arrays of dislocation dipoles, and a subgrain boundary are observed and characterized. An atomic structure of a dislocation dipole is also proposed, and the effect of such dislocations on thermoelectric properties is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Slack, G. A., in CRC Handbook of Thermoelectrics, Rowe, D. M., ed., Chemical Rubber, Boca Raton, Fl. (1995), Chap 34.Google Scholar
2 Hicks, L. D., Harmon, T. C., and Dresselhaus, M. S., Applied Physics Letters 63, 3230 (1993).Google Scholar
3 Hicks, L. D., and Dresselhaus, M. S., Physical Review B 47, 16631 (1993).Google Scholar
4 Cronin, S. B., Lin, Y. M., Koga, T., Sun, X., Ying, J. Y., 18th International Conference on Thermoelectrics, 554 (1999).Google Scholar
5 Venkatasubramanian, R., Colpitts, T., Watko, E., and Hutchby, J., 15th International Conference on Thermoelectrics, 454 (1996).Google Scholar
6 Mahan, G., Sales, B., and Sharp, J., Physics Today 50,42 (1997).Google Scholar
7 Mahan, G. D. and Sofo, J.O., Proceedings of the National Academy of Sciences, USA, 93, 7436 (1996).Google Scholar
8 Caillat, T., Borshchevsky, A., and Fleurial, J. P., 13th International Conference on Thermowlectrics, 58 (1995).Google Scholar
9 Slack, G. A. and Tsoukala, V. G., Journal of Applied Physics 76, 1665 (1994).Google Scholar
10 Meisner, G. P., Torikachvili, M. S., Yang, K. N., Maple, M. B., and Guertin, R. P., Journal of Applied Physics 57, 3073 (1985).Google Scholar
11 Braun, D. J. and Jeitschko, W., Journal of the Less-Common Metals 76, 33 (1980)Google Scholar
12 Jeitschko, W. and Braun, D., Acta Crystallographica B33, 3401 (1977)Google Scholar
13 Nolas, G. S., Slack, G. A., Morelli, D. T., Tritt, T. M., and Ehrlich, A. C., Journal of Applied Physics 79. 4002 (1996).Google Scholar
14 Kaiser, J. W. and Jeitschko, W., Journal Of Alloys and Compounds 291, 66 (1999).Google Scholar
15 Takizawa, H., Miura, K., Ito, M., Suzuki, T., and Endo, T., Journal of Alloys and Compounds 282, 79 (1999).Google Scholar
16 Sales, B. C., Chakoumakos, B. C., and Mandrus, D., Physical Review B 61, 2475 (2000).Google Scholar
17 Fleurial, J. P., Borshchevsky, A., Caillat, T., Morelli, D. T., and Meisner, G. P., 15th International Conference on Thermoelectrics, 91 (1996).Google Scholar
18 Morelli, D. T., Meisner, G. P., Chen, B., Hu, S., and Uher, C., Physical Review B 56, 7376 (1997).Google Scholar
19 Meisner, G. P., Morelli, D. T., Hu, S., Yang, J., and Uher, C., Physical Review Letters 80, 3551 (1998).Google Scholar
20 Nolas, G. S., Cohn, J. L., and Slack, G. A., Physical Review B 58, 164 (1998).Google Scholar