Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T14:19:55.685Z Has data issue: false hasContentIssue false

Dislocation Structure, Phase Stability and Yield Stress Behavior of Ultra-High Temperature L12 Intermetallics: Combined First Principles-Peierls-Nabarro Approach

Published online by Cambridge University Press:  26 February 2011

Oleg Y. Kontsevoi
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208–3112
Yuri N. Gornostyrev
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208–3112
Arthur J. Freeman
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208–3112
Get access

Abstract

We present results of comparative studies of the dislocation properties and the mechanical behavior for a class of intermetallic alloys based on platinum group metals (PGM) which are being developed for ultra-high temperature applications: Ir3X and Rh3X (where X = Ti, Zr, Hf, V, Nb, Ta). For the analysis of dislocation structure and mobility, we employ a combined approach based on accurate first-principles calculations of the shear energetics and the modified semi-discrete 2D Peierls-Nabarro model with an ab-initio parametrization of the restoring forces. Based on our analysis of dislocation structure and mobility, we provide predictions of temperature yield stress behavior of PGM-based intermetallics, show that their dislocation properties are closely connected with features of the electronic structure and the L12 → D019 structural stability, and demonstrate the dramatic difference in dislocation structure and the mechanical behavior between PGM alloys with IVA and VA group elements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Backman, D.G. and Williams, J.C., Science 255, 1082 (1992).Google Scholar
2. Yamabe-Mitarai, Y., Ro, Y., Maruko, T., and Harada, H., Metall. Mater. Trans. A 29, 537 (1998).Google Scholar
3. Yamabe-Mitarai, Y., Koizumi, Y., Murakami, H., Ro, Y., Maruko, T., and Harada, H., Scripta Mater. 36, 393 (1997).Google Scholar
4. Veyssiere, P. and Saada, G., in Dislocations in Solids, ed. Nabarro, F.R.N., and Duesbery, M.S., (Elsevier, Amsterdam, 1996), vol. 10, pp. 254441.Google Scholar
5. Mryasov, O.N., Gornostyrev, Yu.N., van Schilfgaarde, M., and Freeman, A.J., Acta Mater. 50, 4545 (2002), and references therein.Google Scholar
6. Schoeck, G., Phil. Mag. A 69, 1085 (1994).Google Scholar
7. Vitek, V., Crystal Lattice Defects 5, 1 (1974).Google Scholar
8. Miller, R. and Phillips, R., Phil. Mag. A 73, 803 (1996).Google Scholar
9. Hirth, J.P. and Lote, J., Theory of Dislocations (McGraw-Hill, New York, 1968).Google Scholar
10. Lejcek, L., Czech. J. Phys. 26, 294 (1976).Google Scholar
11. Schoeck, G., Phil. Mag. A 81, 1161 (2001).Google Scholar
12. Wimmer, E., Krakauer, H., Weinert, M., and Freeman, A.J., Phys. Rev. B 24, 864 (1981).Google Scholar
13. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
14. Paxton, A.T. and Sun, Y.Q., Phil. Mag. A 78, 85 (1998).Google Scholar
15. Paidar, V., Pope, D.P., and Vitek, V., Acta Metall. 32, 435 (1984).Google Scholar
16. Xu, J.-H., Lin, W., and Freeman, A.J., Phys. Rev. B 48, 4276 (1993), and references therein.Google Scholar
17. Bieber, A. and Gautier, F., Solid State Commun. 38, 1219 (1981).Google Scholar
18. Yamabe-Mitarai, Y., Hong, M.-H., Ro, Y., and Harada, H., Phil. Mag. Lett. 79 673 (1999).Google Scholar
19. Wee, D.M. and Suzuki, T., Trans. JIM 20, 634 (1979).Google Scholar
20. Gyurko, A.M. and Sanchez, J.M.: Mater. Sci. Eng. A 170, 169 (1993).Google Scholar
21. Yamabe-Mitarai, Y., Ro, Y., and Nakazawa, S.: Intermetallics 9, 423 (2001).Google Scholar
22. Miura, S., Honma, K., Terada, Y., Sanchez, J.M., and Moria, T., Intermetallics 8, 785 (2000).Google Scholar