Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T14:10:23.597Z Has data issue: false hasContentIssue false

Dislocation patterning and conservative recovery in single slip

Published online by Cambridge University Press:  14 March 2011

Patrick Veyssière
Affiliation:
LEM, CNRS-ONERA, BP 72, 92322 Châtillon cedex, France
Fabienne Grégori
Affiliation:
LPMTM, Institut Galilée, 99 av. J.B. Clément, 93430 Villetaneuse, France
Get access

Abstract

Prismatic loops generated by cross-slip are organised in staircase-like strings such that the beginning of a loop corresponds in the screw orientation with the end of its neighbour. Strings constitute nucleation sites for dislocation tangles thus offering an explanation for spontaneous patterning in single glide. A loop string can be partially and even totally eliminated by a single impacting dislocation. In dense walls, loop refinement can also take place conservatively by mutual annihilation of loops of opposite signs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kuhlmann-Wilsdorf, D. and Wilsdorf, H. G. F., Electron Microscopy and the Strength of Crystals, Eds. Thomas, G. and Washburn, J. (Interscience Publishers, New York, 1963), pp. 575604.Google Scholar
2. Basinski, S. J. and Basinski, Z. S., Dislocations in Solids, Ed. Nabarro, F. R. N. (North Holland, Amsterdam, 1979), vol. 4, pp. 261362.Google Scholar
3. Kubin, L. P. and Kratochvìl, J., Phil. Mag. A, 80, 201 (2000).Google Scholar
4. Kratochvìl, J. and Saxlovà, M., Scripta Metall. Mater., 26, 113 (1992).Google Scholar
5. Sharp, J. V. and Makin, M. J., Phil. Mag., 10, 1011 (1964).Google Scholar
6. Grégori, F. and Veyssière, P., Phil. Mag. A, in press (2001).Google Scholar
7. Grégori, F., Penhoud, P. and Veyssière, P., Phil. Mag. A, 81, 529 (2001).Google Scholar
8. Essmann, U. and Rapp, M., Acta Met., 21, 1305 (1973).Google Scholar
9. Essmann, U. and Mughrabi, H., Phil. Mag. A, 40, 731 (1979).Google Scholar
10. Steeds, J. W., Proc. Roy. Soc., A292, 343 (1966).Google Scholar
11. Shi, X., Saada, G. and Veyssière, P., Phil. Mag. Lett., 71, 1 (1995).Google Scholar
12. Veyssière, P. and Grégori, F., Phil. Mag. A, in press (2001).Google Scholar
13. Veyssière, P., Phil. Mag. Lett., submitted (2001).Google Scholar
14. Veyssière, P. and Grégori, F., Phil. Mag. A, in press (2001).Google Scholar
15. Grégori, F., Ph. D. Thesis, University of Paris VI (1999).Google Scholar
16. Pande, C. S. and Hazzledine, P. M., Phil. Mag., 24, 1039 (1971).Google Scholar