Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T13:37:44.745Z Has data issue: false hasContentIssue false

A Dishing Model for STI CMP Process

Published online by Cambridge University Press:  01 February 2011

Shih-Hsiang Chang*
Affiliation:
Department of Mechanical Engineering, Far East College, 49, Chung-Hwa Rd., Hsin-Shih, Tainan 744, Taiwan, ROC.
Get access

Abstract

It is well known that oxide dishing occurring in STI CMP leads to considerable sidewall and edge-parasitic conduction. Thus, a closed-form solution for quantitative prediction of oxide dishing is needed. A contact-mechanics-based approach to describe the steady-state oxide dishing occurring in STI CMP process is presented. The theory is validated through comparison with experimental data in the literature. Once validated, the model is used to quantify the effect of pattern geometry on oxide dishing. It is shown that the predictions of the model agree reasonably well with the experimental results measured in overpolishing time.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yu, C., Fazan, P. C., Mathews, V. K., and Doan, T. T., Appl. Phys. Lett., 61, 1344 (1992).Google Scholar
2. Chen, J. Y., Lei, T. F., Chao, T. S., Yen, D. L. W., Jin, B. J., and Lin, C. J., J. Electrochem. Soc., 144, 315 (1997).Google Scholar
3. Grillaert, J., Meuris, M., Vrancken, E., Heylen, N., Devriendt, K., and Heyns, M., in Proceedings of 4th CMP-MIC, 1999, pp.105112.Google Scholar
4. Schluter, J. A., Kim, I., and Krupa, F. J., in Proceedings of 4th CMP-MIC, 1999, pp.336339.Google Scholar
5. Gan, T., Tugbawa, T., Lee, B., Boning, D., and Jang, S., J. Electrochem. Soc., 148, G159 (2001).Google Scholar
6. Pan, J. T., Ouma, D., Li, P., Boning, D., Redecker, F., Chung, J., and Whitby, J., in Proceedings of VMIC, June 1998, pp.467472.Google Scholar
7. Chekina, O. G., Keer, L. M., and Liang, H., J. Electrochem. Soc., 145, 2100 (1998).Google Scholar
8. Johnson, K. L., Contact Mechanics, Cambridge University Press, 1985 Google Scholar
9. Preston, F., J. Soc. Glass. Technol., 11, 214 (1927).Google Scholar
10. Saxena, R., Thakurta, D. G., Gutmann, R., and Grill, W. N., Thin Solid Films, 449, 192 (2004).Google Scholar
11. Elbel, N., Neureither, B., Ebersberger, B., and Lahnor, P., J. Electrochem. Soc., 145, 1659 (1998).Google Scholar
12. Patrick, W. P., Guthrie, W. L., Standley, C. L., and Schiable, P. M., J. Electrochem. Soc., 138, 1778 (1991).Google Scholar
13. Baker, A. R., in Chemical Mechanical Planarization I, (Electrochem. Soc. Proc. 96-22, 1996) pp. 228238.Google Scholar
14. Chang, S. H., Microelectron. Eng., 77, 76 (2005).Google Scholar
15. Park, T., Tugbawa, T., Yoon, J., Boning, D., Chung, J., Muralidhr, R., Hymes, S., Gotkis, Y., Alamgir, S., Walesa, R., Shumway, L., Wu, G., Zhang, F., Kister, R., and Hawkins, J., in Proceedings of VMIC, 1998, pp.437442. W5.5.6Google Scholar