Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T13:56:47.405Z Has data issue: false hasContentIssue false

Direct Synthesis of Acidic Aluminosilicate Mesoporous Molecular Sieves

Published online by Cambridge University Press:  10 February 2011

Robert Mokaya
Affiliation:
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 lEW, U.K.
William Jones
Affiliation:
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 lEW, U.K.
Get access

Abstract

A simple and versatile synthetic route, whereby primary amine surfactants are the template in the assembly of aluminosilicate inorganic species, is used to prepare aluminosilicate mesoporous molecular sieves in which Brønsted acidity is generated by simply calcining the as-synthesised material. Al incorporation is accompanied by charge-balancing protonated amine molecules. Si and Al are incorporated into the mesoporous framework to yield materials with textural properties similar to those of MCM-41 but with substantially higher Brønsted acidity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. and Beck, J. S., Nature 359 710712 (1992).Google Scholar
2. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. O., Chu, C. T-W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B. and Schlenker, J. L., J. Am. Chem. Soc. 114, 1083410843 (1992).Google Scholar
3. Hue, Q. S., Margolese, D. I., Ciesla, U., Feng, P. Y., Gier, T. E., Sieger, P., Leon, R., Petroff, P. M., Schuth, F. and Stucky, G. D., Nature 368, 317321 (1994).Google Scholar
4. Tanev, P. T. and Pinnavaia, T. J., Science 267, 865867, (1995).Google Scholar
5. Tanev, P. T., Chibwe, M. and Pinnavaia, T. J., Nature 368, 321323 (1994).Google Scholar
6. Corma, A., Fornés, V., Navarro, M. T. and Pérez-Pariente, J., J Catalysis 148, 569574 (1994)Google Scholar
7. Luan, Z. H., Cheng, C. F., Zhou, W. Z. and Klinowski, J. J. Phy. Chem. 99, 10181024 (1995).Google Scholar
8. Luan, Z. H., Cheng, C. F., He, H-Y. and Klinowski, J., J. Phy. Chem. 99, 1059010593 (1995).Google Scholar
9. Mokaya, R., Jones, W., Luan, Z., Alba, M. D. and Klinowski, J., Catalysis Letters 37, 113120 (1996)Google Scholar
10. Schmidt, R., Akporiaye, D., Stocker, M. and Ellestad, O. H. in Zeolites and Related Microporous Materials. State of the Art 1994. Studies in Surface Science and Catalysis, edited by Weitkamp, J., Karge, H. G., Pfeifer, H. and Hoderich, W., Vol. 84 (1994) 6168 (Elsevier Science, Amsterdam).Google Scholar
11. Branton, P. J., Hall, P. G., Sing, K. S. W., Reichert, H., Scuth, F. and Unger, K. K., J. Chem. Soc. Faraday Trans. 90 29652967 (1994).Google Scholar
12. Rathousky, J., Zukal, A., Franke, O. and Shulzekloff, G., J. Chem. Soc. Faraday Trans. 90 28212826 (1994).Google Scholar