Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T13:08:44.283Z Has data issue: false hasContentIssue false

Direct Inkjet Deposition of Ceramic Green Bodies: II – Jet Behaviour and Deposit Formation

Published online by Cambridge University Press:  10 February 2011

N. Reis
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, UK; Now at Manchester Materials Science Centre, Grosvenor St., Manchester, Ml 7HS, UK.
K. A. M. Seerden
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, UK;
B. Derby
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, UK; Now at Manchester Materials Science Centre, Grosvenor St., Manchester, Ml 7HS, UK.
J. W. Halloran
Affiliation:
Materials Science and Engineering Department, University of Michigan, Ann Arbor, MI 48109-2136, USA;
J. R. G. Evans
Affiliation:
Department of Materials, Queen Mary and Westfield College, London, El 4NS, UK;
Get access

Abstract

In order to successfully build three-dimensional shapes by hot-melt inkjet deposition it is essential to control the building block characteristics, i.e., the deposit geometry, dimensions and fine feature resolution. The deposit formation is mainly dependent on the material systems and their jetting behaviour. It is therefore crucial to understand how the jet formation is affected by the inks 'rheological properties and how to manipulate the jet-head driving parameters to achieve optimum deposition conditions. This paper reports our investigations with a model jet firing station, about the influence of driving parameters of hot-melt drop-on-demand print-heads (e.g., pulse shape and frequency) on the jet and deposit formation characteristics, for both unfilled and powder loaded vehicles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sachs, E., Cima, M., Williams, P., Brancazio, D., Comie, J., ASME J. Eng. Ind. 114, p. 481488 (1992).Google Scholar
2. Blazdell, P. F., Evans, J. R. G., Edirisinghe, M. J., Shaw, P. and Binstead, M. J., J. Mat. Sci. Lett. 14, p. 15621565 (1995).Google Scholar
3. Kim, S. and Mckean, D. E., J. Mat. Sci. Lett. 17, p. 141–44 (1998).Google Scholar
4. Windle, J. and Derby, B., J. Mat. Sci. Lett. in press.Google Scholar
5. Yoo, J., Cima, M., Sachs, E. and Suresh, S., Ceram. Eng. Sci. Proc., 16 [5] p. 755762 (1995).Google Scholar
6. Yoo, J., Cho, K., Bae, W., Cima, M., and Suresh, S., J. Am. Ceram. Soc. 81 [1], p. 2132 (1998).Google Scholar
7. Baskaran, S., Maupin, G. D., and Graff, G. L., Am. Ceram. Soc. Bull. 77 [7], p. 5358 (1998).Google Scholar
8. Gao, F. and Sonin, A., Proc. R. Soc. Lond. A 444, p. 533554 (1994).Google Scholar
9. Orme, M., Huang, C., and Courter, J. in Melt Spinning, Strip Casting and Slab Casting, edited by Matthys, E. F. and Truckner, W. G. (Proceedings of the 1996 125th TMS Annual Meeting, Anaheim, CA, USA, 1996) p. 125143.Google Scholar
10. Fromm, J. E., IBM J. Res. Develop. 28 [3], p. 322333 (1984).Google Scholar
11. Adams, R. L. and Roy, J., ASME J. Appl. Mech. 53 [1], p. 193197 (1986).Google Scholar
12. Badie, R. and Lange, D. F. de, Proc. R. Soc. Lond. A, 453, p. 25732581 (1997).Google Scholar
13. Lord, Rayleigh, Phil. Mag. S5, 34 [207], p. 145154 (1892).Google Scholar
14. Shield, T. W., Bogy, D. B., and Talke, F. E., IBM J. Res. Develop. 31 [1], p. 96110 (1987).Google Scholar
15. Seerden, K. A. M., Reis, N., Derby, B., Halloran, J. W., and Evans, J. R. G., to be published in the SFF Symposium Proceedings, MRS Fall Meeting, Boston, MA, USA, 1998.Google Scholar