Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T13:51:47.786Z Has data issue: false hasContentIssue false

Direct Imaging of “Explosively” Propagating Buried Molten Layers In Amorphous Silicon Using Optical, Tem And Ion Backscattering Measurements*

Published online by Cambridge University Press:  26 February 2011

D. H. Lowndes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
G. E. Jellison Jr
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
S. P. Withrow
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
D. N. Mashburn
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
R. F. Wood
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

The behavior of pulsed laser-induced “explosively” propagating buried molten layers (BL) in ion implantation-amorphized silicon has been studied in a time- and spatially-resolved way, using nanosecond time-resolved reflectivity measurements, “Z-contrast” scanning transmission electron microscope (STEM) imaging of implanted Cu ions transported by the BL, and helium ion backscattering measurements. Infrared (1152 nm) reflectivity measurements allow the initial formation and subsequent motion of the BL to be followed continuously in time. The BL velocity is found to be a function of both its depth below the surface and of the incident KrF laser energy density (El); a maximum velocity of about 14 m/s is observed, implying an undercoolingvelocity relationship of about 14 K/(m/s). Z-contrast STEM measurements show that the final BL thickness is less than 15 nm. Time-resolved optical, TEM and ion backscattering measurements of the final BL depth, as a function of E1, are also found to be in excellent agreement with one another.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Research sponsored by the Division of Materials Sciences, U.S. Department of Energy, under Contract No. DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc.

References

REFERENCES

1. Thompson, M. O., Galvin, G. J., Mayer, J. W., Peercy, P. S., Poate, J. M., Jacobson, D. C., Cullis, A. G., and Chew, N. G., Phys. Rev. Lett. 52, 2360 (1984).CrossRefGoogle Scholar
2. Thompson, M. O., Mayer, J. W., Cullis, A. G., Webber, H. C., Chew, N. G., Poate, J. M., and Jacobson, D. C., Phys. Rev. Lett. 50, 896 (1983).CrossRefGoogle Scholar
3. Galvin, G. J., Thompson, M. O., Mayer, J. W., Hammond, R. B., Paulter, N., and Peercy, P. S., Phys. Rev. Lett. 48, 33 (1982).Google Scholar
4. Peercy, P. S. and Thompson, M. O., Mat. Res. Soc. Symp. Proc. 35, 53 (1985).Google Scholar
5. Lowndes, D. H., Wood, R. F. and Narayan, J., Phys. Rev. Lett. 52, 561 (1984).CrossRefGoogle Scholar
6. Wood, R. F., Lowndes, O.H. and Narayan, J., Appl. Phys. Lett. 44, 770 (1984).CrossRefGoogle Scholar
7. Lowndes, D. H., Jellison, G. E. Jr, Wood, R. F., and Pennycook, S. J., and Carpenter, R. F., Mat. Res. Soc. Symp. Proc. 35, 101 (1985). Note: The 190 nm a-layer thickness mentioned in the caiption to Fig. 4 of this reference (and in its discussion in the text) is incorrect; the correct thickness was 440 nm.CrossRefGoogle Scholar
8. Lowndes, D. H., Jellison, G. E. Jr and Wood, R. F., Phys. Rev. 26B, 6747 (1982).CrossRefGoogle Scholar
9. Narayan, J. and White, C. W., Appl. Phys. Lett. 44, 35 (1984).CrossRefGoogle Scholar
10. Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M., and Jacobson, D. C., Appl. Phys. Lett. 42, 698 (1983).CrossRefGoogle Scholar
11. Gore, G., Phil. Mag. 9, 73 (1855).Google Scholar
12. Gilmer, G. H. and Leamy, H. J., in Laser and Electron Beam Processing of Materials (ed. by White, C. W. and Peercy, P. S., Academic Press, New York, 1980), p. 227.Google Scholar
13. Leamy, H. J., Brown, W. L., Celler, G. K., Foti, G., Gilmer, G. H., and Fan, J. C. C., Appl. Phys. Lett. 38, 137 (1981).Google Scholar
14. Thompson, M. O., Bucksbaum, P. H. and Bokor, J., Mat. Res. Soc. Symp. Proc. 35, 181 (1985).Google Scholar
15. Lowndes, O.H., Jellison, G. E. Jr, Pennycook, S. J., Wood, R. F., Withrow, S. P., and Mashburn, D. N., in preparation for The Physical Review.Google Scholar
16. Jellison, G. E. Jr and Burke, H. H., manuscript in preparation.Google Scholar
17. Pennycook, S. J. and Narayan, J., Appl. Phys. Lett. 45, 385 (1984).Google Scholar
18. Narayan, J., White, C. W., Holland, O.W., and Aziz, M. J., J. Appl. Phys. 56, 1821 (1984).Google Scholar
19. Sinke, W. and Saris, F. W., Phys. Rev. Lett 53, 2121 (1984).CrossRefGoogle Scholar