Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T13:11:48.603Z Has data issue: false hasContentIssue false

Direct Assembly of Quantum Confined Nano-Particles

Published online by Cambridge University Press:  01 February 2011

Ingo Pluemel
Affiliation:
ingo.pluemel@uni-due.de, University of Duisburg-Essen, Institute of Combustion and Gas Dynamics, Lotharstr. 1, Duisburg, 47057, Germany, +49 (0)203-379-2867, +49 (0) 203-3792709
Klemens Hitzbleck
Affiliation:
klemens.hitzbleck@uni-due.de, University of Duisburg-Essen, Institute of Combustion and Gas Dynamics, Lotharstr. 1, Duisburg, 47057, Germany
Ivo W. Rangelow
Affiliation:
.Rangelow@TU-Ilmenau.de, Technische Universität Ilmenau, Institute for Micro- and Nanoelectronics, Gustav-Kirchhoff-Str. 1, Ilmenau, 98693, Germany
Jan Meijer
Affiliation:
jan.meijer@rub.de, Ruhr-Universität Bochum, RUBION, Universitätsstraße 150, Bochum, 44801, Germany
Hartmut Wiggers
Affiliation:
hartmut.wiggers@uni-due.de, University of Duisburg-Essen, Institute of Combustion and Gas Dynamics, Lotharstr. 1, Duisburg, 47057, Germany
Get access

Abstract

Advances in nanoparticle technology enable the production of new types of electronic devices, catalytic systems and complex functional surface coatings. For most of these applications, random deposition or self-assembled arrangement of the particles on surfaces are sufficient. However, an increasing number of potential applications such as single electron transistors and quantum computers require exact placement of single nanoparticles with sub-10 nm resolution and specific size. Till date, techniques that provide an exact online placement of countable and size-selected nanoparticles for functional devices have not been reported. For this purpose a cluster-jet system, based on a gas-phase nanoparticle synthesis source, connected to a focussing collimator system has been developed. The objective of this technique is to assemble countable single nanoparticles with spatial resolution of 10 nm or below onto a pre-structured substrate. In the first stage of this system, nanoparticles in the size regime between 3 and 10 nm are synthesized in a lowpressure microwave plasma reactor. This reactor has the unique advantage of generating particles with defined size distribution, structure, morphology and low degree of agglomeration due to coulomb repulsion during particle formation and growth. Separated single particles are extracted by means of a particle laden molecular beam. A mass filter consisting of a particle mass spectrometer (PMS) coupled to the reactor is used to select nanoparticles of a specific size, according to their mass, charge and kinetic energy. In order to achieve the designated lateral resolution, the particle laden beam will be collimated by electromagnetic lenses and focused onto a pierced AFM-tip. Operation of the focusing mechanism and tip preparation have been successfully performed separatly and are currently being adapted to the use in the cluster-jet system. After completion, this technique is intended to enable the assembly of nanoparticles in almost any desired two-dimensional structure onto a substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Gans, B.-J. de, Duineveld, P.C., Schubert, U.S., Adv. Mater. 16 (3), 203213 (2004).Google Scholar
[2] Bäuerle, D., Denk, R., Pedarnig, J.D., Piglmayer, K., Heitz, J., Schrems, G., Appl. Phys. A 77(2, 203207 (2003).Google Scholar
[3] Schildenberger, M., Bonetti, Y., Aeschlimann, M., Scandella, L., Gobrecht, J., Prins, R., Cat. Lett. 56(1), 16 (1998).Google Scholar
[4] Ginger, D.S., Zhang, H., Mirkin, C.A., Angew. Chem. Int. Ed. 43 (1), 3045 (2004).Google Scholar
[5] Martin, M., Roschier, L., Hakonen, P., Parts, Ü., Paalanen, M., Schleicher, B., Kauppinen, E.I., Appl. Phys. Lett. 73 (11), 15051507 (1998).Google Scholar
[6] Junno, T., Carlssen, S.-B., Xu, H., Montelius, L., Samuelson, L., Appl. Phys. Lett. 72 (5), 548550 (1998).Google Scholar
[7] Kleinwechter, H., Janzen, C., Knipping, J., Wiggers, H., Roth, P., J. Mater. Sci. 37 (20), 43494360 (2002).Google Scholar
[8] Ifeacho, P., Wiggers, H., Roth, P., Proc. Combust. Inst. 30, 2577 (2005).Google Scholar
[9] Knipping, J., Wiggers, H., Kock, B.F., Hülser, T., Rellinghaus, B., Roth, P., Nanotechnology 15 (8), 16651670 (2004).Google Scholar
[10] Hitzbleck, K., Wiggers, H., Roth, P., Appl. Phys. Lett. 87 (9), 093105 (2005).Google Scholar
[11] Huelser, T.P., Wiggers, H., Ifeacho, P., Dmitrieva, O., Dumpich, G., Lorke, A., Nanotechnology 17 (13), 31113115 (2006).Google Scholar
[12] Knipping, J., Wiggers, H., Rellinghaus, B., Roth, P., Konjhodzic, D., Meier, C., J. Nanosci. Nanotech. 4 (8), 10391044 (2004).Google Scholar
[13] Giesen, B., Wiggers, H., Kowalik, A., Roth, P., J. Nanopart. Res. 7 (1), 2941 (2005).Google Scholar
[14] Grabiec, P., Radojewski, J., Zaborowski, M., Domanski, K., Schenkel, T., Rangelow, I.W., J. Vac. Sci. Technol. B 22 (1), 1621 (2004).Google Scholar
[15] Meijer, J., Vogel, T., Burchard, B., Rangelow, I.W., Bischoff, L., Wrachtrup, J., Domhan, M., Jelesko, F., Schnitzler, W., Schulz, S.A., Singer, K., Schmidt-Kaler, F., Appl. Phys. A 83 (2), 321327 (2006).Google Scholar