Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T23:50:26.506Z Has data issue: false hasContentIssue false

Dimensional Analysis of Ionic Transport Mechanisms in Cement-Based Materials

Published online by Cambridge University Press:  10 February 2011

R. Barbarulo
Affiliation:
(1) Centre de Recherche Interuniversitaire sur le Béton, Université Laval, Sainte-Foy, Canada, GIK 7P4 (2) Division Recherche et Développement - Département EMA Électricité de France, Les Renardières, 77818 Moret-sur-Loing, France
J. Marchand
Affiliation:
(1) Centre de Recherche Interuniversitaire sur le Béton, Université Laval, Sainte-Foy, Canada, GIK 7P4
S. Prene
Affiliation:
(2) Division Recherche et Développement - Département EMA Électricité de France, Les Renardières, 77818 Moret-sur-Loing, France
Get access

Abstract

In order to investigate the validity of the local equilibrium assumption, a dimensional analysis of various ionic transport problems currently encountered in civil engineering has been performed. The dimensional analysis allows comparing, on a theoretical basis, the rate of ionic transport to the rate of chemical reaction. This approach has been applied to various practical cases. The analysis clearly shows that the local equilibrium assumption is verified in most practical cases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

8. REFERENCES

1 Marchand, J., Gérard, B., Delagrave, A., « Ion transport mechanisms in cement-based materials, Materials Science of Concrete, Vol. V, 1998, Edited by Skalny, J. and Mindess, S., American Ceramic Society, pp. 307400.Google Scholar
2 Adenot, F., «Concrete durability: Modeling the chemical and physical damage processes », Ph.D. Thesis, Université d'Orléans, France, (in French), 1992.Google Scholar
3 , Barbarulo, Marchand, J., « Dimensional analysis of ionic transport mechanisms in cement-based materials », Cement and Concrete Research, proposed for publication, 1999.Google Scholar
4 Samson, É., Marchand, J., Beaudoin, J.J., « Describing ion diffusion in cement-based materials using the homogeneisation technique », Cement and Concrete Research, Vol. 29, N° 8, pp. 13411345.Google Scholar
5 Langhaar, H.L., «Dimensional analysis and theory of models », pp. 55-58, Ed. John Wiley & Sons, New York, 1951.Google Scholar
6 Duncan, W.J., « Physical similarity and dimensional analysis, An elementary treatise », pp. 8797, Ed. Edward Arnold and Co., London, 1955.Google Scholar
7 The values of the physical constants are the following: Faraday F = 96485 C/ mol, the ideal gas constant R=8.32 J/K.mol and the dielectric constant of the environment (water) ε = 80 m−3.kg−1.S4.A2.Google Scholar
8 Gérard, B., « Influence of various coupled phenomena on the long-term behavior of concrete structures for nuclear waste storage facilities », Ph.D. Thesis, Cachan, E.N.S., France, Laval University, Quebec, Canada, (in French).Google Scholar
9 Castellote, M., Andrade, C., Alonso, C., «Chloride-binding isotherms in concrete submitted to non-steady-state migration experiments», Cement and Concrete Research, Vol. 29 (in press).Google Scholar