Published online by Cambridge University Press: 15 February 2011
Diffusion of Au into dislocation-free and highly dislocated Si with high B-background doping levels has been investigated with the aid of neutron activation analysis in conjunction with mechanical sectioning. The high B-doping level causes extrinsic conditions, i.e., the hole concentration exceeds the intrinsic carrier concentration even at diffusion temperatures between 900°C and 1100°C. All profiles are accurately described on the basis of the kick-out diffusion model and a mechanism which takes into account segregation of Au at dislocations. Our analysis provides solubility data of Au in Si and effective diffusion coefficients
related to interstitial Au and Si self-interstitials I. The dependence of these quantities on the B-background doping level is well described by the Fermi-level effect. This analysis supports singly positively charged states in p-type Si of Au on interstitial (Aui) and substitutional (Aus) sites and of Si self-interstitials. Successful fitting of
additionally requires an acceptor level of Aus. The electrical properties deduced for Aui, Aus and I are summarized in Table 2. Au profiles in highly dislocated Si obtained especially after diffusion at 900° C give evidence of Au trapped at dislocations. From our preliminary experimental results we determine an enthalpy difference of 2.7 eV between Au on substitutional sites and Au captured at dislocations.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.