No CrossRef data available.
Published online by Cambridge University Press: 22 February 2011
The surface properties of symmetric microphase separated diblock copolymers of polystyrene (PS) and polymethylmethacrylate (PMMA) were investigated using X-ray photoelectron spectroscopy (XPS), the specular reflectivity of neutrons and secondary ion mass spectrometry (SIMS). PS, the lower surface energy component, exhibited a preferential affinity for the free surface. For copolymers that are far from the bulk microphase separation transition (MST), the surface consists of a layer of pure PS. When the system is close to the MST the surface is a mixture of PS and PMMA. The PS surface excess can be described bya N-1/2 dependence, where N is the number of segments that comprise the copolymer chain. It is shown that the surface undergoes an ordering transition at a temperature T2 that is above that of the bulk MST. The ordering of the bulk lamellar morphology is induced by an ordering at the surface. This is analogous to the ferromagnetic order observed in systems such as Gd at temperatures above the bulk Curie temperature. The results here are discussed in light of previous work on copolymer surfaces and in light of mean field theory.
This work was supported in part by U. S. DOE under Contract DE-AC046-DP00789
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.