Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T21:57:23.051Z Has data issue: false hasContentIssue false

Development of ZnTe Contacts for Cd1-xMgxTe Thin-Film Solar Cells for Tandem Applications

Published online by Cambridge University Press:  31 January 2011

Joel N. Duenow
Affiliation:
joel.duenow@nrel.gov, National Renewable Energy Laboratory, Golden, Colorado, United States
Ramesh Dhere
Affiliation:
ramesh.dhere@nrel.gov, National Renewable Energy Laboratory, Golden, Colorado, United States
Jian Li
Affiliation:
jian.li@nrel.gov, National Renewable Energy Laboratory, Golden, Colorado, United States
Wyatt K. Metzger
Affiliation:
wyatt.metzger@nrel.gov, National Renewable Energy Laboratory, Golden, Colorado, United States
Anna Duda
Affiliation:
anna.duda@nrel.gov, National Renewable Energy Laboratory, Golden, Colorado, United States
Tim A. Gessert
Affiliation:
Tim.Gessert@nrel.gov, National Renewable Energy Laboratory, Golden, Colorado, United States
Get access

Abstract

Polycrystalline Cd1-xMgxTe (CMT) thin films are a potential absorber material for two-junction thin-film tandem solar cell applications because the desired top cell bandgap range of 1.6 to 1.8 eV is readily obtained using CMT with only small resultant changes in the lattice constant from that of CdTe. Tandem devices require the top cell to have a transparent back contact to transmit the sub-bandgap spectrum to the bottom cell. Sputtered Cu-doped ZnTe (ZnTe:Cu) thin films, which offer potential as a transparent back contact interface layer, have been used successfully in CdTe devices. We apply ZnTe:Cu back contacts to CMT devices to continue development toward a transparent top cell. We describe the effects of depositing ZnTe:Cu at different temperatures and with different Cu contents on the net acceptor concentration, minority carrier lifetime, and device performance. We present here the highest reported CMT device efficiency of 9.6% at a bandgap of 1.57 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Coutts, T. J. Ward, J. S. Young, D. L. Emery, K. A. Gessert, T. A. and Noufi, R. Prog. Photovolt.: Res. Appl. 11, 359375 (2003).Google Scholar
2. Dhere, R. Ramanathan, K. Scharf, J. Moutinho, H. To, B. Duda, A. and Noufi, R. Proc. of the 4th World Conf. on Photovoltaic Energy Conversion (IEEE, Waikoloa, HI, 2006), p. 546549.Google Scholar
3. Dhere, R. G. Ramanathan, K. Scharf, J. Young, D. To, B. Duda, A. Moutinho, H. and Noufi, R. Mater. Res. Soc. Symp. Proc.; Vol. 1012 (San Francisco, CA, 2007), 1012–Y02.Google Scholar
4. Rose, D. H. Hasoon, F. S. Dhere, R. G. Albin, D. S. Ribelin, R. M. Li, X. S. Mahathongdy, Y. Gessert, T. A. and Sheldon, P. Prog. Photovolt.: Res. Appl. 7, 331340 (1999).Google Scholar
5. Gessert, T. A. Asher, S. Johnston, S. Duda, A. Young, M. R. and Moriarty, T. Proc.of the 4th World Conf. on Photovoltaic Energy Conversion (IEEE, Waikoloa, HI, 2006).Google Scholar
6. Gessert, T. A. Asher, S. Johnston, S. Young, M. Dippo, P. and Corwine, C. Thin Solid Films 515, 61036106 (2007).Google Scholar
7. Gessert, T. A. Duda, A. Asher, S. E. Narayanswamy, C. and Rose, D. Proc. of the 28th Photovoltaic Specialists Conference (IEEE, Anchorage, AK, 2000).Google Scholar
8. Gessert, T. A. Metzger, W. K. Asher, S. E. Young, M. R. Johnston, S. Dhere, R. G. Moriarty, T. and Duda, A. Proc. of the 33rd Photovoltaic Specialists Conference (IEEE, San Diego, CA, 2008).Google Scholar
9. Gessert, T. A. Smith, S. Moriarty, T. Young, M. Asher, S. Johnston, S. Duda, A. and DeHart, C. Proc. of the 31st Photovoltaic Specialists Conference (IEEE, Lake Buena Vista, FL, 2005).Google Scholar