Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T14:02:17.372Z Has data issue: false hasContentIssue false

Development of shear bands in annular shear granular flows

Published online by Cambridge University Press:  11 February 2011

Payman Jalali
Affiliation:
School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332
Mo Li
Affiliation:
School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332
Get access

Abstract

Using hard-disk simulations of relatively dense packs of mono-sized system in an annular Couette geometry the formation of dilute regions inside the granular media, namely shear bands, are investigated. The results represent the influence of entire system characteristics such as solid area fraction and shear rate on the development of shear bands as well as the local properties of grains that cause them to participate in the formation of a shear band. Moreover, simulations have been performed for binary-sized system, which revealed that the formation of such diluted shear bands is unlikely.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jaeger, H.M., Nagel, S.R. and Behringer, R.P., Physics Today 49, 32 (1996).Google Scholar
2. Howell, D., Behringer, R.P. and Veje, C., Phys. Rev. Lett. 82, 5241 (1999);Google Scholar
Mueth, D.M., Jaeger, H.M. and Nagel, S.R., Phys. Rev. E 57, 3164 (1998);Google Scholar
Albert, R., Pfeifer, M.A., Barabasi, A.L. and Schiffer, P., Phys. Rev. Lett. 82, 205 (1999);Google Scholar
Liu, C.H., Nagel, S.R., Schecter, D.A., Coppersmith, S.N., Majumdar, S., Narayan, O. and Witten, T.A., Science 269, 513 (1995);Google Scholar
Jalali, P., Polashenski, W., Tynjala, T. and Zamankhan, P., Physica D 162/3–4, 188 (2002).Google Scholar
3. Astrom, J.A., Hermann, H.J. and Timonen, J., Phys. Rev. Lett. 84, 638 (2000);Google Scholar
Torok, J., Krishnamurthy, S., Kertesz, J. and Roux, S., Phys. Rev. Lett. 84, 3851 (2000);Google Scholar
Francois, B., Lacombe, F. and Hermann, H.J., Phys. Rev. E 65, 031311 (2002);Google Scholar
Aharonov, E. and Sparks, D., Phys. Rev. E 65, 051302 (2002).Google Scholar
4. Rowe, P.W., Proc. Roy. Soc. A 269/23, 500 (1962).Google Scholar
5. Mueth, D.M., Debregeas, G.F., Karczmar, G.S., Eng, P.J., Nagel, S.R. and Jaeger, H.M., Nature 406, 385 (2000).Google Scholar
6. Howell, D., Behringer, R.P. and Veje, C.T., Chaos 9, 559 (1999).Google Scholar
7. Lun, C.K.K. and Savage, S.B., J. Appl. Mech. 54, 47 (1987);Google Scholar
Lun, C.K.K. and Bent, A.A., J. Fluid Mech. 258, 335 (1994);Google Scholar
Luding, S., Phys. Rev. E 52, 4442 (1995);Google Scholar
Campbell, C.S., J. Fluid Mech. 348, 85 (1997).Google Scholar
8. Voronoi, G.F., Journal fur die reine und angewandte Mathematik 134, 198 (1908);Google Scholar
Gellatly, B.J. and Finney, J.L., Journal of Non-Crystalline Solids 50, 313 (1982).Google Scholar
9. Richard, P., Oger, L., Lemaitre, J., Samson, L. and Medvedev, N.N., Granular Matter 1, 203 (1999);Google Scholar
Alshibli, K.A. and El-Saidany, H.A., J. Comp. In Civil Eng. 15, 232 (2001).Google Scholar