Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T15:04:07.342Z Has data issue: false hasContentIssue false

Development of indium-rich InGaN epilayers for integrated tandem solar cells

Published online by Cambridge University Press:  25 February 2013

A. G. Melton
Affiliation:
Department of Electrical and Computer Engineering, UNC Charlotte, Charlotte, NC, US
B. Kucukgok
Affiliation:
Department of Electrical and Computer Engineering, UNC Charlotte, Charlotte, NC, US
B-Z. Wang
Affiliation:
Department of Electrical and Computer Engineering, UNC Charlotte, Charlotte, NC, US Department of Electric Information Engineering, Hebei UST, Hebei, P.R. China
N. Dietz
Affiliation:
Department of Physics and Astronomy, Georgia State University, Atlanta, GA, US
N. Lu
Affiliation:
Department of Electrical and Computer Engineering, UNC Charlotte, Charlotte, NC, US Department of Engineering Technology, UNC Charlotte, Charlotte, NC, US
I. T. Ferguson
Affiliation:
Department of Electrical and Computer Engineering, UNC Charlotte, Charlotte, NC, US Department of Physics and Astronomy, Georgia State University, Atlanta, GA, US
Get access

Abstract

InGaN epilayers have been investigated for use in photovoltaic solar cells for the past years. At present, almost all photovoltaic device structures reported have exhibited very low short circuit currents and thus very low solar conversion efficiency. This phenomenon has been attributed to point and extended defect chemistry in InGaN epilayers (e.g. vacancies, misfit dislocations, and V-defects), as well as to spinodal decomposition of the strained InGaN wurtzite lattice system. These defects become more dominant for higher indium concentration InGaN epilayers needed for multijunction photovoltaic device structures. In this work, we will report on the growth and characterization of indium-rich InGaN epilayers that have been grown by novel MOCVD growth technology, including the growth at superatmospheric reactor pressures.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wu, J., Walukiewicz, W., Yu, K. M., Shan, W., J. W. A. III, Haller, E. E., Lu, H, Schaff, W. J., Metzger, W. K., and Kurtz, S., Journal of Applied Physics, 94, pp. 64776482, 2003.CrossRefGoogle Scholar
Jani, O., Ferguson, I., Honsberg, C., and Kurtz, S., Applied Physics Letters, vol. 91, p. 132117, 2007.CrossRefGoogle Scholar
Huang, Y., Melton, A., Jampana, B., Jamil, M., Ryou, J.-H., Dupuis, R. D., and Ferguson, I. T., Journal of Photonics for Energy, vol. 2, p. 017001, 2012.CrossRefGoogle Scholar
Woods, V. and Dietz, N., Mat. Sci. Eng. B., pp. 239250, 2006.CrossRefGoogle Scholar
Jani, O., Honsberg, C., Asghar, A., Nicol, D., Ferguson, I., Doolittle, A., and Kurtz, S., 31st IEEE Photovoltaic Specialists Conference, pp. 3742, 2005.Google Scholar
Faleev, N., Jampana, B., Jani, O., Yu, H., Opila, R., Ferguson, I., and Honsberg, C., Applied Physics Letters, vol. 95, p. 051915, 2009.CrossRefGoogle Scholar
Jani, O., Yu, H., Trybus, E., Jampana, B., Ferguson, I., Doolittle, A., Honsberg, C., 22nd European Photovoltaic Solar Energy Conference, 2007.Google Scholar
Zheng, X., Horng, R.-H., Wuu, D.-S., Chu, M.-T., Liao, W.-Y., Wu, M.-H., Lin, R.-M., and Lu, Y.-C., Applied Physics Letters, vol. 93, p. 261108, 2008.CrossRefGoogle Scholar
Cai, X., Zeng, S., and Zhang, B., Applied Physics Letters, vol. 95, p. 173504, 2009.CrossRefGoogle Scholar
Jeng, M., Lee, Y. and Chang, L., J. Phys. D: Appl. Phys., vol. 42, p. 105101, 2009.CrossRefGoogle Scholar
Dahal, R., Pantha, B., Li, J., Lin, J. Y., and Jiang, H. X., Applied Physics Letters, vol. 94, p. 063505, 2009.CrossRefGoogle Scholar
Wu, M. H., Chang, S. P., Liao, W. Y., Chu, M. T., Chang, S. J., Surface & Coatings Technology, http://dx.doi.org/10.1016/j.surfcoat.2012.05.092, 2012.Google Scholar
Pantha, B. N., Wang, H., Khan, N., Lin, J. Y., and Jiang, H. X., Physical Review B, vol. 84, p. 075327, 2011.CrossRefGoogle Scholar
Zhao, W., Wang, L., Wang, J., Hao, Z., and Luo, Y., Journal of Crystal Growth, vol. 327, pp. 202204, 2011.CrossRefGoogle Scholar
Shiojiri, M., Chuo, C. C., Hsu, J. T., Yang, J. R., and Saijo, H., Journal of Applied Physics, vol. 99, p. 073505, 2006.CrossRefGoogle Scholar
Onderka, B., Unland, J., and Schmid-Fetzer, R.,“ J. Mater. Res., vol. 17, pp. 30653083, 2002.CrossRefGoogle Scholar
MacChesney, J., Bridenbaugh, P. M., and O’Connor, P. B., Mater. Res. Bull., vol. 5, pp. 783791, 1970.CrossRefGoogle Scholar