Published online by Cambridge University Press: 15 February 2011
A high-throughput work flow for rapid synthesis and testing of metal oxide nanoparticles for the discovery of new gas sensors of improved sensitivity and selectivity has been developed. The material libraries consist of nanoscaled metal oxide particles which are obtained either from pyrolysis of appropriate precursors or from polyol mediated synthesis. The design of a multielectrode array with 8x8 interdigital electrodes allows efficient and automated pipetting robot assisted sample preparation and material deposition. For characterisation of the sensor arrays high throughput impedance spectroscopy has been used. Test gas sequences and sensor temperatures can be varied. As an example, the properties of an In2O3-based library are introduced.