Published online by Cambridge University Press: 25 February 2011
Carbon aerogels are synthesized via the polycondensation of resorcinol and formaldehyde, followed by supercritical drying and pyrolysis at 1050 °C in nitrogen. Because of their interconnected porosity, ultrafine cell structure and high surface area, carbon aerogels have many potential applications, such as in supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, we calculated the permeability of carbon aerogels from equations based upon Darcy's law. Our measurements show that carbon aerogels have apparent permeabilities on the order of 10−12 to 10−10 cm2 for densities ranging from 0.44 to 0.05 g/cm3. Like their mechanical properties, the permeability of carbon aerogels follows a power law relationship with density and average pore size. Such findings help us to estimate the average pore sizes of carbon aerogels once their densities are known. This paper reveals the relationships among permeability, pore size and density in carbon aerogels.
Work performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48